Basics of Cloud Computing – Lecture 6
PaaS - Platform as a Service
Google App Engine

Pelle Jakovits
18 March, 2014, Tartu
Outline

• Introduction to PaaS
• Google Cloud
• **Google AppEngine**
 – DEMO - Creating applications
 – Available Google Services
 – Costs & Quotas
• Windows Azure PaaS
• PaaS Advantages & Disadvantages
Cloud Services

- SaaS
- PaaS
- IaaS
Platform as a Service - PaaS

- Model of Cloud Computing where users are provided with a full platform for their applications
- Enables businesses to build and run web-based, custom applications in on-demand fashion
- Eliminates the expense and complexity of selecting, purchasing, configuring, and managing the hardware and software.
- Provides access to unlimited computing power, decreasing upfront costs dramatically
PaaS Characteristics

• Multi-tenant architecture
• Built-in scalability of deployed software
• Integrated with web services and databases
• Users are provided with tools to simplify creating and deploying applications
• Simplifies prototyping and deploying startup solutions
PaaS Characteristics

- Users only pay for the service that they use.
- More fine grained cost model
- Provides tools to handle billing and subscription management
- Using PaaS typically results in a vendor lock-in.
Types of PaaS

• **Stand Alone Application Platforms**
 – Typically built on top of an existing IaaS
 – Provides development tools for designing and deploying software.
 – Provide all required computing resources and services needed for hosted applications

• **Social Application Development Platforms**
 – Used to develop addons and internal applications for social websites like Google+ and Facebook.
 – Integrated API with the social website platform.
 – Can be seen as extending a SaaS

• **Open-Computing Platforms**
 – Not tied to a single IaaS provider.
 – Supports applications that are written in numerous languages and that use any type of database, operating system, and server.
Google Cloud

• IaaS & PaaS services
• All services built on top of Google hardware located across the globe
 • Global redundancy and service locality
• Utilizes Google’s Global network
 – Dedicated fiber optic networks
 – Even between continents
• Google Managed Services
 – Database administration, server configuration, sharding and load balancing managed for the user
Google Cloud Services

- **Compute Engine** - IaaS
- **App Engine** - PaaS

Storage
- **Cloud SQL** – Fully managed Relational MySQL
- **Cloud Storage** – Object storage for applications
- **Cloud Datastore** – Automatically scaled NoSQL storage

Big Data
- **Big Query** – SQL like queries against multi-terabyte datasets
Google Cloud Tools

- **Cloud Endpoints**
 - RESTful services to make your code accessible from iOS, Android and Javascript clients.

- **Google Cloud SDK**
 - For creating and managing Google cloud services

- **Push-To-Deploy** – Git repository to access your code

- **Cloud Playground** – Browser access to all Google Services
Google Cloud Product Lines

• **Mobile**
 – Automatic scaling and load balancing
 • From hundreds to millions of users
 • Scaling up to 6 billion requests a day
 – Dedicated hosting for serving static content

• **Hadoop Data Processing**
 – Run at Scale – MapR used Google Compute Engine to set a new world record for MinuteSort, sorting 1.5 trillion bytes in 60 seconds.

• **Gaming**
 – Synchronize game state across multiple devices
 – Analyze user engagement
 – Distribute and monetize your game with Google AdSense and Google In-App Payments.
Google App Engine
Try it out yourself DEMO @
https://developers.google.com/appengine
Google AppEngine

- Easy to build, maintain, and scale applications
- No servers to maintain yourself
- Upload & Go
- Was created before Google Cloud became available for public use
- Supported languages
 - Python, Java, PHP (preview), Go (Experimental)
App Engine Characteristics

- **Persistent storage** with queries, sorting, and transactions
- App Engine distributes user requests across multiple servers and *scales servers* to meet *dynamic traffic* demands.
- **Asynchronous task queues** for performing work outside the scope of a request
- **Scheduled tasks** for triggering events at specified times or regular intervals
- **Integration** with all other Google cloud services and APIs
- Your application runs within its own *secure, sandboxed and reliable* environment that is independent of the hardware, operating system, or physical location of the server.
Use Cases

• **Rovio**
 – Transition “Angry Birds” games to an online environment
 – Use a platform that could support explosive demand
 – Easily add new features to improve the user experience

• **Ubisoft**
 – Develop a web-based version of a console game “From Dust”
 – Find an easy-to-use system so developers focus on the user experience
 – Scale effortlessly to accommodate a fast-growing number of players

• **Best Buy**
 – Quickly develop and deploy apps to achieve its business goals
 – Create apps that are scalable and low-maintenance
 – Dramatic time and cost savings in app development, which has led to the creation of many more apps
Datastore

- **Google Cloud SQL** - A fully-managed web service that allows you to create, configure, and use relational databases that live in Google's cloud.

- **Datastore** - A schemaless object datastore providing robust, scalable storage for your web application, a rich data modeling API, and a SQL-like query language called GQL.

- **Blobstore** - Allows your application to serve large data objects, such as video or image files, that are too large for storage in the Datastore service.
Datastore

- **Search** - Allows your application to perform Google-like searches over structured data such as: plain text, HTML, atom, numbers, dates, and geographic locations.

- **Memcache** - A distributed, in-memory data cache to improve application performance.

- **Logs** - Provides programmatic access to application and request logs from within your application.
Communication

• **Channel** - Creates a persistent connection between your application and Google servers, so you can send messages to JavaScript clients in real time without "polling."

• **Google Cloud Endpoints** - Enables automatic generation of APIs, making it easier to create a web backend for web clients and mobile clients.

• **Mail** - Sends email messages on behalf of administrators and users with Google Accounts, and receives mail at various addresses.

• **URL Fetch** - Uses Google's networking infrastructure to issue HTTP and HTTPS requests to URLs on the web.

• **XMPP** - Enables an application to send and receive chat messages to and from any XMPP-compatible chat messaging service.

• **Traffic Splitting** - Allows you to roll out features for your app slowly over a period of time. Traffic Splitting works by splitting incoming requests to different versions of your app.
Process management

• **Task Queue** - Allows applications to perform work outside of a user request, and organize that work into small, discrete units, called "tasks," to be executed later.

• **Scheduled Tasks** - Allows applications to configure regularly scheduled tasks that operate at defined times or regular intervals.

• **Remote** - Lets external applications transparently access App Engine services. For example, you can use Remote API to access a production datastore from an app running on your local machine.
Computation

• **Backends** - Instances of your application that are exempt from request deadlines and have access to more memory and CPU resources.

• **Images** - Manipulates, combines, and enhances images, converts images between formats, and queries image metadata such as height and frequency of colors.

• **MapReduce** - An optimized adaptation of the MapReduce computing model for efficient distributed computing over large data sets.
Other services

- **App Identity** - Gives code access to the application identity; provides framework to assert this identity over OAuth.
- **Users** - Allows applications to sign in users with Google Accounts or OpenID, and address these users with unique identifiers.
- **Capabilities** - Provides detection of outages and scheduled maintenance for specific APIs and services, so that your application may bypass them or inform your users.
- **Multitenancy** - Makes it easy to compartmentalize your data to serve many client organizations from a single instance of your application.
- **PageSpeed** - A family of tools that automatically optimizes the performance of your application.
AppEngine for Mobiles

- Define business logic on App Engine and access them via RESTful APIs on multiple platforms including Android, IOS and JavaScript.
- Deploy an app in 300 seconds
- Automatically generate strongly-typed client libraries for iOS, Android, and JavaScript.
- Geo-proximity search
- Push Notifications to iOS and Android
- Simple access to data storage and processing
- Might not make sense if your mobile application does not need to be connected to internet
AppEngine for Mobiles

iOS

Cloud Endpoint Clients

Cloud Endpoints

Mobile Backend Running On Google App Engine Instances

Android
IaaS Pricing Model

- Per instance hour
- Per storage amount/month
- Per Network bandwidth/month
- Per additional services
 - Static IP
 - Autoscaling/load balancing
PaaS Pricing Model

<table>
<thead>
<tr>
<th>Hosting</th>
<th>Free quota per app per day</th>
<th>Pricing if you exceed your free quota</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-demand Frontend Instances</td>
<td>28 free instance hours</td>
<td>$0.08 / hour</td>
</tr>
<tr>
<td>Reserved Frontend Instances</td>
<td></td>
<td>$0.05 / hour</td>
</tr>
<tr>
<td>High Replication Datastore Storage</td>
<td>1 GB total limit</td>
<td>$0.18 / GB / month</td>
</tr>
<tr>
<td>Outgoing Network Traffic</td>
<td>1 GB</td>
<td>$0.12 / GB</td>
</tr>
<tr>
<td>Incoming Network Traffic</td>
<td>1 GB</td>
<td>Free</td>
</tr>
</tbody>
</table>
PaaS Pricing Model

<table>
<thead>
<tr>
<th>APIs</th>
<th>Free quota per app per day</th>
<th>Pricing if you exceed your free quota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datastore API</td>
<td>50k free read/write/small</td>
<td>$0.09/100k write ops</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0.06/100k read ops</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0.01/100k small ops</td>
</tr>
<tr>
<td>Search API</td>
<td>1000 basic operations</td>
<td>$0.10 / 10k basic operations</td>
</tr>
<tr>
<td></td>
<td>0.01 GB indexing documents</td>
<td>$2.00 / GB indexing documents</td>
</tr>
<tr>
<td></td>
<td>0.25 GB document storage</td>
<td>$0.18 / GB / month document storage</td>
</tr>
<tr>
<td></td>
<td>100 complex searches</td>
<td>$0.60 / 10k complex searches</td>
</tr>
<tr>
<td></td>
<td>1000 simple searches</td>
<td>$0.13 / 10k simple searches</td>
</tr>
</tbody>
</table>
PaaS Pricing Model

<table>
<thead>
<tr>
<th>APIs</th>
<th>Free quota per app per day</th>
<th>Pricing if you exceed your free quota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blobstore Storage</td>
<td>5 GB total limit</td>
<td>$0.13 / GB / month</td>
</tr>
<tr>
<td>Email API</td>
<td>100 recipients</td>
<td>$0.01 / 100 recipients</td>
</tr>
<tr>
<td>XMPP API</td>
<td>10k stanzas</td>
<td>$0.10 / 100k stanza</td>
</tr>
<tr>
<td>Channel API</td>
<td>100 channels opened</td>
<td>$0.01 / 100 channels opened</td>
</tr>
<tr>
<td>Dedicated Memcache</td>
<td>No free quota</td>
<td>$0.12 / GB / hour</td>
</tr>
<tr>
<td>SNI SSL Certificates</td>
<td>No free quota</td>
<td>$9.00 / set of five SNI certificate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>slots / month</td>
</tr>
<tr>
<td>SSL Virtual IPs</td>
<td>No free quota</td>
<td>$39.00 / virtual IP / month</td>
</tr>
<tr>
<td>Pagespeed Network Traffic</td>
<td>No free quota</td>
<td>$0.39 / GB</td>
</tr>
</tbody>
</table>
Windows Azure

• Hybrid PaaS & IaaS cloud platform
• Designed more for enterprise applications
• Programming languages
 – .NET, Java, PHP, Node.js, Python, or Ruby
• Datastores
 – Azure SQL database and NoSQL storage
• Mobiles
 – Native SDK’s for Windows, iOS, Android and HTML5
 – Notification hubs for push notifications (Windows, iOS, Android)
Windows Azure

- **BigCompute**
 - HPC on demand
 - MPI applications with Remote Direct Memory Access (RDMA)

- **HDInsight**
 - Setting up dynamic Hadoop clusters for Data Analyzis

- **Examples of applications running in Azure:**
 - Office 365, Skype, Bing, and Xbox
 - WebZen, Toyota Gazoo.com, HALO
Other PaaS Examples

- **AppScale**
 - Open-Source framework
 - Supports Google App Engine Applications.
 - Supports MySQL Clusters, HBase, Hypertable, and Apache Cassandra
 - Python, Go, and Java applications.

- **Cloud Foundry**
 - Cloud Foundry is an open-source PaaS platform that supports programming languages Java and Scala.

- **AppFog**
 - Supports Java, Node, .Net, Ruby, PHP, MySQL, Mongo, PostgreSQL
 - Choose your own Cloud Provider.

- **Heroku**
 - Was one of the first PaaS services offered on the market
 - Supports Ruby, Java, Scala, and Python applications
PaaS Advantages

• User does not have to manage low level computing resources and services
• Provider handles most of the non functional requirements of your applications
• Scaling is automatically managed by the platform
• Easier and Agile application deployment
 – Simplifies prototyping and application startups
• Lower costs
 – Pay for only what is used
 – More fine-grained cost model than in IaaS
• Platform provider has the best knowledge to optimize the services running on the underlying hardware
PaaS Disadvantages

• **Not in full control** over:
 – Computing resources (Intel vs AMD, GPU’s, FPGA, …)
 – Software and library versions
 – Service configuration

• Available programming languages are typically limited

• **Vendor lock-in**

• Offered services may not be flexible enough for user needs

• Have to **fully trust** in the PaaS provider
 – Billing accuracy
 – Security
 – Reliability
 – Data ownership

• What happens when application exceeds billing quotas?
Thats All

• This weeks practice session is:
 – Creating and deploying Google AppEngine applications using python

• Next lecture: Other Cloud Services
References

• Google App Engine
 – https://developers.google.com/appengine/

• Windows Azure

• Mastering Cloud Computing: Foundations and Applications Programming
 Authors: Rajkumar Buyya, Christian Vecchiola, S.Thamarai Selvi