Arvutiteaduse instituut
Courses.cs.ut.ee Arvutiteaduse instituut Tartu Ülikool
  1. Kursused
  2. 2025/26 kevad
  3. Business Data Analytics (MTAT.03.319)
EN
Logi sisse

Business Data Analytics 2025/26 kevad

  • Pealeht
  • Loengud
  • Viited

This course will help you develops a modern analytical mindset, technical skills, and strategic frameworks needed to leverage data analytics.

No programming requirements. You can use vibe coding!

We will rely heavily on Generative AI and Agentic AI to help the students. Students will learn to frame business problems analytically, apply appropriate techniques using Python, and communicate insights effectively to drive decision-making.

Learning Objectives Upon completion, students will be able to:

  • Strategic Analytics Thinking
  • Frame business problems as analytical questions
  • Evaluate AI and analytics opportunities across business functions
  • Assess benefits, costs, risks, and ethical implications
  • Adquire Technical Proficiency
  • Apply core techniques for exploratory analysis, regression, classification, clustering, time series
  • Manipulate data using pandas; visualize with matplotlib and seaborn

USe Generative AI & LLMs:

  • Leverage LLMs (ChatGPT, Claude) for code generation, exploration, and insights
  • Apply prompt engineering for analytical tasks
  • Evaluate capabilities and limitations of generative AI tools
  • Agentic AI & Automation

Understand AI agent architectures and autonomous systems

  • Design human-in-the-loop systems balancing efficiency with judgment
  • Distinguish augmentation from automation
  • Apply governance frameworks for responsible AI in Business Applications

Solve real-world problems:

  • customer segmentation, churn prediction, demand forecasting, campaign optimization
  • Combine multiple techniques for comprehensive answers
  • Communication & Storytelling
  • Design effective visualizations and craft data narratives
  • Tailor communication to different stakeholders

Assessment and Structure

  • Individual Assignments
  • BiWeekly Python exercises applying techniques to business datasets

Group Project End-to-end analytics project addressing a real business problem. Deliverables a Jupyter notebook and written report

  • Arvutiteaduse instituut
  • Loodus- ja täppisteaduste valdkond
  • Tartu Ülikool
Tehniliste probleemide või küsimuste korral kirjuta:

Kursuse sisu ja korralduslike küsimustega pöörduge kursuse korraldajate poole.
Õppematerjalide varalised autoriõigused kuuluvad Tartu Ülikoolile. Õppematerjalide kasutamine on lubatud autoriõiguse seaduses ettenähtud teose vaba kasutamise eesmärkidel ja tingimustel. Õppematerjalide kasutamisel on kasutaja kohustatud viitama õppematerjalide autorile.
Õppematerjalide kasutamine muudel eesmärkidel on lubatud ainult Tartu Ülikooli eelneval kirjalikul nõusolekul.
Courses’i keskkonna kasutustingimused