Problem 1: Non-binary coins

Our definition of PTM gives the machine the possibility to pick random bits (i.e., do something with probability $1/2$). But what if we want to do something with a different probability, say, $1/3$? The definition of PTM should not depend on what kind of random numbers we use!

(a) Show that there is a polynomial-time PTM that, given input x, outputs 1 with probability $1/3 \pm 2^{-|x|}$ (but not more or less).

Note: This gives us a subroutine that we can use to simulate $1/3$-random bits with high enough precision not to influence the overall output distribution of the PTM too much.

Solution. The PTM does the following:

- Let $n := |x|$.
- Pick an integer $r \in \{0, \ldots, 2^n - 1\}$. (This can be done by taking n random bits and interpreting them as an integer.)
- Return 1 iff $3 \mid r$.

The algorithm works in polynomial time. The probability of output 1 is $2^{-n}R$ where R is the number of integers r in $\{0, \ldots, 2^n - 1\}$ with $3 \mid r$. We have $R = \lceil 2^n/3 \rceil = 2^n/3 \pm 1$. Thus $2^{-n}R = 2^{-n}(2^n/3 \pm 1) = 1/3 \pm 2^{-n}$.

(b) Show that there is not polynomial-time PTM that, given input n, outputs 1 with probability exactly $1/3$.

Hint: You can assume that the PTM runs exactly $T(n)$ steps for some function T (i.e., the runtime does not depend on the random choices). Let R be the number of random choices that lead to output 1. Show that the probability of output 1 is a fraction whose denominator is a power of two.

Solution. We can assume that the PTM runs exactly $T(n)$ steps because we can just make it run extra steps when needed (that do not affect the final result). There are $2^{T(n)}$ different possible random choices when running exactly $T(n)$ steps. The probability of output 1 is thus $R/2^{T(n)}$. This is a fraction which has a power of two
in the denominator. $1/3$ cannot be written as such a fraction. Thus $R/2^{T(n)} \neq 1/3$. Hence the PTM does not output 1 with probability exactly 1/3.

Problem 2: Amplification

We have define the class BPP as the set of all languages that can be solved in probabilistic polynomial time with probability at least 2/3. We have seen that the arbitrary number 2/3 does not matter much: if we can decide L in probabilistic polynomial time with probability 2/3, then we can decide L in probabilistic polynomial time with probability α for any constant $\alpha < 1$.

We showed this by simply constructing a new algorithm \hat{M} that runs the original algorithm M t times (for suitable t), and then outputs the most common output.

A search problem is a relation S between bitstrings (i.e., S is a set of pairs (x, y) where y is a solution for x). We say we can “solve S in probabilistic polynomial time with probability α” iff there is a PTM M such that for all x, $\Pr[(x, y) \in R : y \leftarrow M(x)] \geq \alpha$.

Is amplification also possible for search problems? That is, is the following fact true?

Lemma 1 (Wrong!) If we can solve a search problem S in probabilistic polynomial time with probability 2/3, then we can solve S in probabilistic polynomial time with probability α.

We will consider the prime search problem. Given N, the problem is to find a prime $p \in [N, 2N]$. Assume that we have a PTM M_{prime} that solves the prime search problem with probability 2/3.

(a) Show that amplification by majority decision does not work for constructing a PTM M_{prime} that solves the prime search problem in probabilistic polynomial time with probability, say, 3/4.

Solution. If we run $M_{\text{prime}}(N)$ t times (for polynomial t), we will get a different number each time (with high probability), about 2/3 of them being primes. ($[N, 2N]$ contains exponentially many primes.) Since no number is repeated, a majority decision will output an arbitrary one of these numbers. With probability 1/3 it will be a non-prime. Thus we return a prime with probability less than 3/4.

(b) Show how to solve the prime search problem in probabilistic polynomial time with probability 3/4 using M_{prime}.

Note: Here you may use the fact that it can be decided in deterministic polynomial time whether a given number is a prime.

1For simplicity, we consider only search problems where every x has a solution.
Solution. The algorithm for finding a prime in $[N,2N]$ with probability $3/4$ is:

- $p \leftarrow M_{\text{prime}}(N)$.
- Test if p is prime. If so, return p.
- Else: repeat (max. t times).
- After t unsuccessful tries: return \bot.

The probability of outputting \bot is at most $(1/3)^t$. If \bot is not output, the output must be a prime. Thus we output a prime with probability $1 - (1/3)^t$. For $t = 2$ we have $1 - (1/3)^2 = 8/9 \geq 3/4$.

(c) (Bonus points) Show that Lemma 1 is not true.

Hint: That is, you should show that there is a search problem that can be solved in probabilistic polynomial time with probability $2/3$, but not with probability, say, $3/4$. For example, you could use a random search problem S where for each x, a bitstring y is a solution with probability 0.7.

Note: A complete proof will be quite elaborate. A proof sketch is sufficient.

Solution. Sketch: Let S be as in the hint. The following algorithm M solves S with probability $2/3$: On input x, output a random y. Since $0.7 > 2/3$ of all y are correct solutions for x, $M(x)$ solves S with probability $2/3$.

However, S cannot be solved with probability $3/4$. For every x, the set $Y = \{y : (x,y) \in S\}$ of solutions is a random set which contains each y with probability 0.7. Thus, a PTM $M(x)$ will output a y' that is stochastically independent of Y. (Note that M is never given any information about S or Y.) Hence $y' \in Y$ with probability $0.7 < 3/4$. Hence M does not solve S with probability $3/4$.

Note that this argument was for a randomized search problem. What we skip in this proof sketch is to show that if a randomized search problem is not solvable, then by picking and fixing a search problem S at random, with probability 1 we get a search problem that is not solvable. (There is some additional math involved here.)