1 IP and perfect soundness

Let \mathbf{IP}' be the class of languages that have interactive proofs with perfect soundness and perfect completeness (i.e., in the definition of \mathbf{IP}, we replace $2/3$ by 1 and $1/3$ by 0).

Show that $\mathbf{IP}' \subseteq \mathbf{NP}$.

You get bonus points if you only use the perfect soundness (not the perfect completeness).

Note: In the practice we will show that $\mathbf{dIP} = \mathbf{NP}$ where \mathbf{dIP} is the class of languages that has interactive proofs with deterministic verifiers. You may use that fact.

Hint: What happens if we replace the proof system by one where the verifier always uses 0 bits as its randomness? (More precisely, whenever V would use a random bit b, the modified verifier V_0 chooses $b = 0$ instead.) Does the resulting proof system still have perfect soundness? Does it still have perfect completeness?

2 Interactive proof for invertible matrices

Let

$$L := \{(M, p) : M \text{ is an invertible } n \times n \text{ matrix over } GF(p)\}.$$

That is $(M, p) \in L$ iff M is a square matrix and there exists a matrix M^{-1} such that $MM^{-1} = I \mod p$. (I denotes the identity matrix.)

Some useful facts:
- The best known algorithm for matrix multiplication uses $\Omega(n^{2.3728639\ldots})$ arithmetic operations over $GF(p)$ for $n \times n$ matrices.
- To the best of my knowledge, the fastest algorithm for deciding whether a matrix is invertible runs in deterministic polynomial-time but also runs uses $\Omega(n^{2.3728639\ldots})$ arithmetic operations over $GF(p)$.
- Multiplying an $n \times n$ matrix with an n-dimensional vector takes $O(n^2)$ operations over $GF(p)$. (To compute $y = Mx$, simply compute $y_i = \sum_j M_{ij}x_j$ for all i.)

(a) Design a 0-round interactive proof for L with perfect completeness and perfect soundness.

Note: “0-round” is not a typo.
(b) Design a 2-round interactive proof for L with perfect completeness and with soundness $1/p$ where the verifier V makes only $O(n^2)$ arithmetic operations and where each message consists only of n elements of GF(p). (I.e., the communication complexity is $O(n \log p)$.) Prove the completeness of the interactive proof.

Note: The solution from (a) does not work here because the verifier takes more than $O(n^2)$ operations. Also, a natural proof would be for the prover to just send M^{-1}, and the verifier checks whether $M^{-1}M = I$. But that takes $\Omega(n^{2.3728639\ldots})$ operations.

Hint: If M is not invertible, for any x, how many x' with $Mx = Mx'$ are there? And be inspired (but not too closely) by the graph non-isomorphism proof.

(c) Show that the protocol from (b) has soundness $1/p$.

Hint: What is the size of the kernel of M? Show that this implies that there are at least p different values x' with $Mx = Mx'$?