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Introduction

In recent years the popularity of the method called deep learning [Hin07] has increased
noticeably in the machine learning community. Deep learning was successfully applied to
speech recognition[DYDA12] and many other tasks in machine learning[DHK13]. In all these
studies the performance of the resulting system was better than other machine learning
methods were able to achieve so far.

The core of the deep learning method is an artificial neural network. One of the proper-
ties, which gives this family of learning algorithms a special place, is the ability to extract
“meaningful” (from a human perspective) concepts from the data by combining the fea-
tures based on the structure of the data. The extracted concepts sometimes have clear
interpretation and that makes us feel as if the machine has indeed learned something.
Here we step into the realm of artificial intelligence, the possibility of which never stops
to fascinate our minds.

A recent work, which brings together deep learning and artificial intelligence is a pa-
per “Playing Atari with Deep Reinforcement Learning”[MKS+13] published by DeepMind1

company. The paper describes a system that combines deep learning methods and rein-
forcement learning in order to create a system that is able to learn how to play simple
computer games. It is worth mentioning that the system has access only to the visual
information (screen of the game) and the scores. Based on these two inputs the system
learns to understand which moves are good and which are bad depending on the situation
on the screen. Notice that a human player uses exactly same information to evaluate her
performance and adapt her playing strategy. The reported result shows that the system
was able to master several different games and play some of them better than a human
player.

This result can be seen as a step towards truly intelligent machines and thus it fascinates
us. The goal of this project is to create an open-source analogue of such a system using
the description provided in the paper.

1http://deepmind.com
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1 Overview of the system

Before we go into the details, let us describe the overall architecture of the system and
show how the building blocks are put together.

1.1 The task

The system receives a picture of a game screen (an example is shown in Figure 1) and
chooses an action to take. It then executes this action and is told whether the score
increased, decreased or did not change. Based on this information and playing a large
number of games, the system needs to learn to improve its performance in the game.

Figure 1: A game screen of Breakout.

1.2 Reinforcement learning

In a reinforcement learning setting, an agent takes actions in an environment with the
goal of maximising a cumulative reward. We tried to create a software agent that plays
ATARI games in an emulator (the environment) and maximises its performance in the
game, measured by its score in the games.

1.2.1 Exploration-exploitation

When the algorithm chooses between possible actions, it picks a “learned” action with
probability 1 − ε and a random action with probability ε. The value of ε is gradually
decreased as the algorithm learns to play better.

It is necessary to sometimes pick a random action to not get stuck in local reward maxima.
At first, the value of ε is small and the agent takes random actions most of the time. This
relatively high emphasis on exploration is necessary for the agent to collect information
about the environment. When ε starts to decrease, the agent starts to apply its learned
behaviour more and more, i.e. moving towards exploitation.

ε never reaches zero in the case of our agent, so it still does some exploration even when
performing well in the game.
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1.3 Neural network

The system uses a neural network to assign an expected reward value to each possible
action. The input to the network at any time point consists of the last four preprocessed
game screens the system received. This input is then passed through three successive
hidden layers to the output layer.

The output layer has one node for each possible action and the activation of those nodes
indicates the expected reward from each of the possible actions - here, the action with
the highest expected reward is selected for execution.

1.4 Learning process

Under the fancy word “neural network” hides a quite simple idea: a bunch of nodes
(neurons), each of them having some input to perform a computation on and an output
where the result of the computation will be sent to, are connected to each other. Each
connection has a weight, which regulates how much one neuron can affect another. The
very first layer of the network is usually called the input layer. This is the place where we
inject a data sample. Next to the input layer the network has several trickily connected
hidden layers. And the last layer is an output layer, it gives us the final piece of informa-
tion we wanted to know about the data sample we fed into the network. The resulting
structure can be very complex, but the building blocks are always the same: neurons and
connections between them.

We, as the builders of the system, usually know what we want it do: that is for each data
sample we know what the final output should look like. Now the “smart” neural network
is the one able to produce the output we expect, the “naive” network is the one which is
not. The only thing that differs in those two are the weights on the connections between
the nodes. By changing them in accordance with our final goal the network goes from
being “naive” to being “smart”. This process in general in known as learning.

To explain the concept of learning to the machine we introduce the notion of cost function
(or loss function) which we will denote by L. Given the parameters of the network this
function goes over the data samples, computes the outputs, compares these outputs with
the expected ones and calculates how big is the error the system makes. The learning
process can be represented as the process of minimizing the cost function.

The obvious way to minimize a function is to try out all possible inputs to find the
minimal output. Unfortunately the number of possible input is unfeasibly large. How to
do it is a big question not only for our system. The whole brach on computer science
called optimization is dealing with this issue. One of the most popular technique used in
this area is called gradient descent.

The idea of gradient descent is rather trivial: at each iteration of the learning algorithm it
makes a small step in the “direction” which makes the value of the loss function smaller.
Thus by making enough steps the algorithm will reach an optimum: a place from where a
step in any direction will only increase the value of the loss function. Once this optimum
is found we say that the learning has finished and the system is now as smart as it can
be. It might happen that the optimum we found is not the best one (local optimum),
and there are bunch of techniques (for example Monte Carlo methods) to find the global
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optimum, but we will not dwell into this right now.

Gradient descent uses the gradient (multidimensional derivative) as it’s core:

1. Let the current configuration of the system be w0

2. Compute the derivative (gradient) of the loss function at this point L(w0)

3. Look at the derivative with respect to each element (w1, . . . , wn) = w0 and:

(a) If the derivative is 0 then we should not touch this parameter of our system

(b) Otherwise move one step in the direction opposite to the derivative (positive
slope – decrease the parameter, negative slope – increase the parameter)

4. Repeat starting from the step 2. until the derivatives with respect to all parameters
of the system are zeros (or close to zeros)

Once this process is complete, we believe that our system has reached the optimal state:
its parameters are configures in such way that it will give optimal performance on the
dataset we have. In our system we will use variation of the idea of gradient descent called
RMSProp, you will read about it later.
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2 Components of the system

In this section we intend to describe all the key components of the system in detail.
This description should reflect all the choices we made, justify them and explain how the
components work.

2.1 Launching and communicating with ALE

Just as we, humans, exchange information with a computer game by seeing the computer
screen (input) and pressing the keys (output actions), the system needs to communicate
with the Arcade Learning Environment that hosts the game.

Communication with ALE is achieved using two first-in-first-out (FIFO) pipes which
must be created before ALE is launched. We create the pipes and launch ALE using
the os package of Python. The parameters given to ALE at execution must specify the
way we want to communicate with ALE (FIFO pipes) and the location of the binary file
containing the game to run (Breakout). In addition, we specify that we want ALE to
return unencoded images, that only every 4th frame should be sent to us and whether
the game window should be made visible.

The actual communication starts with a handshake phase, where we define the desired
inputs (screen image and episode information) and ALE responds by informing us about
the dimensions of the image. Thereafter the conversation between ALE and our agent
consists in reading and deciphering inputs from FIFO in pipe and sending the chosen
actions back through FIFO out pipe. The information is read from pipes as one long
String, so deciphering is needed (cutting the input and converting the pieces into appro-
priate types). Similarly, the chosen action has to be transformed to an output string of
specific format. If a game is lost, a specific “reset” signal is sent to start the next game.
When the desired number of games has been played, the communication with ALE can
be terminated by closing the communication pipes.

2.2 Convolutional neural network

Our system receives 4×84×84 pixel values as input. In order to find relevant information
from these four 84×84 images, we use convolutional neural networks (CNN)[LB95]. CNNs
are a specific type of neural network that are particularly adapted to extracting features
from images.

Unlike restricted Boltzmann machines (RBMs) that see their input as an 1D vector,
a CNN treats the input images as 2D objects. These 2D matrices of pixel values are
convolved with linear filters to obtain the activities of the next layer. For example, our
first hidden layer is generated by convolving our images with sixteen different 8×8 filters,
using a step of 4 pixels. This means that for each of the 16 different filters, we first take
the top left 8× 8 values of an image and linearly combine them with the filter, obtaining
as a result one activity value. We then move 4 pixels to the right and multiply another
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8 × 8 area from the image with the same filter. When reaching the right edge of the
image, we start again from the left, only 4 pixels lower. There are 8 · 8 · 4 weights in a
filter of this kind and the same weights (the same filter) is applied at different positions
of the image, as described.

Each linear combination yields one activity value, so convolving an 84 × 84 image with
an 8 × 8 filter with step 4 produces 20 × 20 topologically arranged values. As we apply
16 different filters, we end up with 16 · 20 · 20 nodes in the first hidden layer of our
convolutional network.

An attentive reader will notice that our input consists of 4 images, not one. This means
that each of our filters contains four weight matrices of size 8 × 8. The images will be
convolved with the corresponding 8× 8 matrix and the calculated activities are summed,
so we end up with 16 · 20 · 20 values as before.

Last but not least, a linear rectifier is applied to the activity values, setting all negative
values to 0.

The obtained sixteen 20× 20 feature maps are thereafter convolved with 32 4× 4 filters.
Using a step of 2, this yields 32 × 9 × 9 activity values in the second hidden layer. As
before, the filters are not 2-dimensional, instead they have 16× 4× 4 values.

With these two convolutional layers we have reduced the number of nodes from 4×84×84
to 32× 9× 9. Functionally, after training the system we expect the nodes of the second
hidden layer to represent spatiotemporal patterns relevant for successfully playing the
game.
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Figure 2: A diagram representing the organisation of the deep neural network used. The
two last rows show the number of nodes and the number of independent weights.

2.3 Q-learning

In Section 1.2 we introduced the notion of reinforcement learning: each time an agent per-
forms an action, it receives a reward or punishment and updates its behavior rules accord-
ingly. One very popular method for implementing this concept is called Q-learning[WD92].

The program is in a state st ∈ S and wants to know which action at ∈ A it should do to
maximize the reward r ∈ R. So the typing of the function Q is as follows:

Q : S ×A → R

and the actual implementation of this function is

Qt+1(st, at) = Qt(st, at) + α · (rt+1 + γ ·max
a
Q(st+1, a)−Qt(st, at))

where

Qt(st, at) is the reward I thought I will get if I do action at while being in state st.
In our implementation, this is calculated using the deep neural network.

rt + 1 is the reward I actually got for doing action at while being in state st

α is the learning rate
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γ is a discount factor which says how much should I take into consideration the
future rewards along this path

maxaQ(st+1, a) is what I think will be the best reward available from the next state
(future reward)

2.4 Root Mean Squares of gradients (RMSProp)

In Section 1.4 we have seen the logic of gradient descent update procedure. There are,
however, problems with this approach. One of them is that once you have established
and update vector u you might notice that for some components ui = ∂L(w)

∂wi
it proposes

huge changes and tiny changes for the others. It might be not very reasonable to use
the same learning µ rate for all components. The idea of RMSProp is to come up with a
separate learning rate µi for each of the components ui.

If you can use all of your data to estimate the direction of the gradient, then you can
cope with this problem by just using sign of the gradient sign(∂L(w)

∂wi
). This will ensure

that all components of the gradient are treated equally. This approach is called rprop.
However we do not have the luxury of using all the data points in our loss function L: it
would take too much time. This is where the idea of stochastic gradient descent comes
into play.

2.4.1 Stochastic gradient descent

As you know, if you have a set of differentiable functions, then the sum of these functions is
also differentiable and the derivative of this function is equal to the sum of the derivatives
of these functions:

∇f(w,x) =
∑
∇g(w,xk)

where x is a set of data samples and xk is one data sample. This fact allows us to take a
sample from the dataset, compute updates u on it and then repeat this several time. At
the end of the day it will produce the same results as if we had performed the gradient
descent on the whole dataset at once.

Unfortunately rprop does not work with small sets of subsamples[TH12] (minibatches).
Although the blunt simplification of taking the gradient sign instead of the value works
when we use the whole dataset (because it effectively converges to the average value of
the magnitude of the update) it does not work on small random subsamples: there we
could easily obtain an update which is too large compared to what we would like to have.
The next build-up on top of the rprop idea is called rmsprop and deals with that issue.

2.4.2 RMSProp

When we average the results obtained using rprop method we divide by the magnitude of
the gradient. RMSProp proposes to keep track of previous gradients and divide updates
not by the current magnitude, but the average magnitude over the last several updates
(minibatches). This will allow to modify each component ui according to its previous
magnitudes, preventing from taking it into account with too large or too small weight.
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3 Implementation details

The prototype of the system is built using Python 2.7 with heavy usage of theano[BBB+10]

and numpy[Oli07] libraries. Once the proof-of-concept stage is complete we will consider
using C++ if it will yield better performance. On Figure 3 we present current overall
structure of the application. The subsections below will explain the particularities.

Figure 3: Class diagram representing the overall structure of the application.

3.1 Atari Learning Environment

To simulate the game we use Atari Learning Environment (ALE)[BNVB13]. It is a game
simulator which allows to programmatically send player commands and receive the game
output (image of the game screen, score, state of the game). Class ALE facilitates com-
munication with the game emulator.

3.2 Preprocessing

The game screens are preprocessed by cropping the original 160 × 210-pixel image to a
160× 160 region of interest, which is then downscaled to a 84× 84 image.

The colors from ATARI’s NTSC palette are converted to RGB using a conversion table
2. The RGB representation is then converted to grayscale according to the weighted

2http://www.biglist.com/lists/stella/archives/200109/msg00285.html
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combination 0.21R + 0.71G + 0.07B. This should produce a representation close to
human perception (humans are more sensitive to green than other colours)3. An example
of a preprocessed image is shown in Figure 4.

Figure 4: A preprocessed game screen of Breakout.

3.3 Memory

On of the central parts of the applications if the memory, where game states, player
actions and received rewards are stored. Class MemoryD is a structure where all this
information is stored and implements methods for storing and extracting information.

3.4 Neural network

In our implementation of the neural network we heavily rely on the Theano toolbox.
Theano allows to define, optimize, and evaluate mathematical expressions involving multi-
dimensional arrays efficiently4. We closely follow the deep learning tutorial5 to define and
build the neural network. Classes ConvolutionalLayer, HiddenLayer and OutputLayer

describe building block of the network and the NeuralNet class puts them together and
provides function for training and using the neural network.

3.5 Computing on GPU

As you can imagine, the computations on a neural network are highly parallelizable due to
the fact that you can compute each neuron independently. Also the learning process can
be parallelized to evaluate several inputs at the same time to obtain several updates in one
unit of time. Theano library is able to perform the highly parallel GPU computations.

3.6 Running instructions

For more technical details and running instruction please refer to our wiki https://

github.com/kristjankorjus/Replicating-DeepMind/wiki

3http://www.johndcook.com/blog/2009/08/24/algorithms-convert-color-grayscale/
4http://deeplearning.net/software/theano
5http://www.deeplearning.net/tutorial
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4 Results

At this point of time we can not drive any conclusions about how well the system perform
or is it functional at all. Before we will be able to estimate that we need to finish the
system build-up and confirm that all the learning procedures work.

4.1 Performance measures

One possible measure will be to plot the score change over the time. If we will observe
that over the time the system is able to score more during fixed-length time window than
before, we will have a strong indication that the system is doing something reasonable.

4.2 Comparison to human player

Yet to be performed.

4.3 Comparison to the original paper

Yet to be performed.

4.4 Applications and future usage

We believe that the technique used in this system allows to solve wide variety of machine
learning tasks. It will be interesting to test the system on machine learning benchmark
datasets.
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