Homework assignment 3
Due date: November 12, 2018

It is possible to collect up to 110 points in this homework assignment.

1. (a) Find a legal flow from s to t in the following network with upper and lower bounds.
 (You don’t have to specify all the steps in Ford-Flukerson or Dinitz algorithm that you
 are using, but you have to explain the construction and the resulting flow.)

 ![Network Diagram]

 (b) Find a maximum flow in the network in part (a). Show all minimum cuts.

2. By using the Fast Fourier Transform (FFT) algorithm, evaluate the polynomial
 $A(x) = 3x^4 - 2x^3 + x^2 + 2x$ at the complex 6-th roots of unity. Show at least one level of recursion.

3. Let $A(x) = x^2 - x + 2$ and $B(x) = 2x + 1$. In this question, we will compute the polynomial
 $C(x) = A(x) \cdot B(x)$ by using the FFT algorithm.
 (a) What is the minimum number of points we need to use? Explain.
 (b) Evaluate $A(x)$ at the complex 4th roots of unity. Show at least one level of recursion.
 (c) Evaluate $B(x)$ at the complex 4th roots of unity. Show at least one level of recursion.
 (d) Compute $C(x)$ at the complex 4th roots of unity.
 (e) Find the coefficients of $C(x)$.

4. In this question, you will show that multiplication of n-bit long integers can be implemented
 efficiently by using fast multiplication of polynomials.

 Let a and b be two n-bit nonnegative integers, and let
 \[(a_{n-1}, a_{n-2}, \cdots, a_1, a_0) \quad \text{and} \quad (b_{n-1}, b_{n-2}, \cdots, b_1, b_0)\]
 be their respective binary representations. Define integer $c = a \cdot b$. In this question we are
 interested in algorithm for computing c.
(a) Define polynomials

\[A(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \cdots + a_1x + a_0 \]

and

\[B(x) = b_{n-1}x^{n-1} + b_{n-2}x^{n-2} + \cdots + b_1x + b_0 . \]

Show that \(a = A(2) \) and \(b = B(2) \).

(b) Define polynomial \(C(x) = A(x) \cdot B(x) \). (Note that the polynomial \(C(x) \) can be computed from \(A(x) \) and \(B(x) \) using FFT algorithm.) Is \(C(2) = c \)? Prove or disprove.

(c) What is the degree \(m \) of \(C(x) \)?

(d) Observe that the coefficients of \(C(x) \) are not necessarily all 0 and 1. Propose an algorithm that computes the binary representation of \(c \), namely

\[(c_m, c_{m-1}, \cdots, c_1, c_0) , \]

from the coefficients of \(C(x) \) using only \(O(n) \) arithmetic operations over integers with \(O(\log n) \) bits.