Distributed data processing on the Cloud – Lecture 6

Joins with MapReduce and MapReduce limitations

Satish Srirama

Some material adapted from slides by Jimmy Lin, 2015 (licensed under Creation Commons Attribution 3.0 License)
Outline

• Structured data
 – Processing relational data with MapReduce

• MapReduce limitations
Relational Databases

• A relational database is comprised of tables
• Each table represents a relation = collection of tuples (rows)
• Each tuple consists of multiple fields (columns)
Basic SQL Commands - Queries

CREATE DATABASE mydb;
USE mydb;
CREATE TABLE mytable (id INT PRIMARY KEY, name VARCHAR(20));
INSERT INTO mytable VALUES (1, 'Will');
INSERT INTO mytable VALUES (2, 'Marry');
INSERT INTO mytable VALUES (3, 'Dean');
SELECT id, name FROM mytable WHERE id = 1;
UPDATE mytable SET name = 'Willy' WHERE id = 1;
SELECT id, name FROM mytable;
DELETE FROM mytable WHERE id = 1;
SELECT id, name FROM mytable;
DROP DATABASE mydb;

https://mariadb.com/kb/en/library/basic-sql-statements/
Design Pattern: Secondary Sorting

• MapReduce sorts input to reducers by key
 – Values are arbitrarily ordered
• What if want to sort value also?
 – E.g., \(k \rightarrow (v_1, r), (v_3, r), (v_4, r), (v_8, r) \ldots \)
• Use case:
 – We are monitoring different sensors
 – Data: (timestamp, sensor id, sensor value)
 – Map outputs
 sensorid -> (timestamp, sValue)
 – How to see the activity of each sensor over time?
Secondary Sorting: Solutions

• Solution 1:
 – Buffer values in memory, then sort
 – Why is this a bad idea?

• Solution 2:
 – “Value-to-key conversion” design pattern: form composite intermediate key, (k, v_1)
 – Let execution framework do the sorting
 – Preserve state across multiple key-value pairs to handle processing
 – Anything else we need to do?
Value-to-Key Conversion

Before

\[k \rightarrow (v_1, r), (v_4, r), (v_8, r), (v_3, r) \ldots \]

Values arrive in arbitrary order…

After

\[(k, v_1) \rightarrow (v_1, r) \]
\[(k, v_3) \rightarrow (v_3, r) \]
\[(k, v_4) \rightarrow (v_4, r) \]
\[(k, v_8) \rightarrow (v_8, r) \]

…

Values arrive in sorted order…

Process by preserving state across multiple keys

Remember to partition correctly!
Working Scenario

• Two tables:
 – User demographics (gender, age, income, etc.)
 – User page visits (URL, time spent, etc.)

• Analyses we might want to perform:
 – Statistics on demographic characteristics
 – Statistics on page visits
 – Statistics on page visits by URL
 – Statistics on page visits by demographic characteristic
 – …
Relational Algebra

• Primitives
 – Projection (π)
 – Selection (σ)
 – Cartesian product (\times)
 – Set union (\cup)
 – Set difference (\setminus)
 – Rename (ρ)

• Other operations
 – Join (\bowtie)
 – Group by... aggregation
 – ...
Projection

\[\pi \begin{array}{c}
R_1 \\
R_2 \\
R_3 \\
R_4 \\
R_5 \\
\end{array} \rightarrow
\begin{array}{c}
R_1 \\
R_2 \\
R_3 \\
R_4 \\
R_5 \\
\end{array} \]
Projection in MapReduce

• Easy!
 – Map over tuples, emit new tuples with appropriate attributes
 – No reducers, unless for regrouping or resorting tuples
 – Alternatively: perform in reducer, after some other processing

• Basically limited by HDFS streaming speeds
 – Speed of encoding/decoding tuples becomes important
 – Take advantage of compression when available
 – Semistructured data? No problem!
Selection

\[\sigma \]
Selection in MapReduce

• Easy!
 – Map over tuples, emit only tuples that meet criteria
 – No reducers, unless for regrouping or resorting tuples
 – Alternatively: perform in reducer, after some other processing

• Basically limited by HDFS streaming speeds
 – Speed of encoding/decoding tuples becomes important
 – Take advantage of compression when available
 – Semistructured data? No problem!
Group by… Aggregation

- Example: What is the average time spent per URL?
- In SQL:
 - `SELECT url, AVG(time) FROM visits GROUP BY url`
- In MapReduce:
 - Map over tuples, emit time, keyed by url
 - Framework automatically groups values by keys
 - Compute average in reducer
 - Optimize with combiners
Relational Joins

R₁ R₂ R₃ R₄

S₁ S₂ S₃ S₄

R₁ R₂ R₃ R₄

S₁ S₂ S₃ S₄

R₁ R₂ R₃ R₄

S₁ S₂ S₃ S₄
Working Scenario – visited again

• Two tables:
 – User demographics (userid, gender, age, income, etc.)
 – User page visits (userid, URL, time spent, etc.)

• Analyses we might want to perform:
 – Statistics on demographic characteristics
 – Statistics on page visits
 – Statistics on page visits by URL
 – Statistics on page visits by demographic characteristic
 – ...
Types of Relationships

- One-to-One
- One-to-Many
- Many-to-Many
Join Algorithms in MapReduce

- Reduce-side join
- Map-side join
- In-memory join
 - Striped variant
 - Memcached variant
Reduce-side Join

• Basic idea: group by join key
 – Map over both sets of tuples
 – Emit tuple as value with join key as the intermediate key
 – Execution framework brings together tuples sharing the same key
 – Perform actual join in reducer
 – Similar to a “sort-merge join” in database terminology

• Two variants
 – 1-to-1 joins
 – 1-to-many and many-to-many joins
Reduce-side Join: 1-to-1

Map

Reduce

Note: no guarantee if R is going to come first or S
Reduce-side Join: 1-to-many

Map

Reduce

What’s the problem?
Reduce-side Join: V-to-K Conversion

In reducer...

- New key encountered: hold in memory
- Cross with records from other set

<table>
<thead>
<tr>
<th>keys</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1</td>
<td></td>
</tr>
<tr>
<td>S_2</td>
<td></td>
</tr>
<tr>
<td>S_3</td>
<td></td>
</tr>
<tr>
<td>S_9</td>
<td></td>
</tr>
<tr>
<td>R_4</td>
<td></td>
</tr>
<tr>
<td>S_3</td>
<td></td>
</tr>
<tr>
<td>S_7</td>
<td></td>
</tr>
</tbody>
</table>
Reduce-side Join: many-to-many

In reducer…

Keys: $R_1, R_5, R_8, S_2, S_3, S_9$
Values: $V_1, V_2, V_3, V_4, V_5, V_6$

Hold in memory

Cross with records from other set

What's the problem?
Problems with Reduce-side join

• In summary many-to-many is still left with the scalability issue

• Another big problem:
 – The basic idea behind the reduce-side join is to repartition the two datasets by the join key
 – This requires shuffling both the datasets across the network
Map-side Join: Basic Idea

Assume two datasets are sorted by the join key:

A sequential scan through both datasets to join (called a “merge join” in database terminology)
Map-side Join: Parallel Scans

• If datasets are sorted by join key, join can be accomplished by a scan over both datasets

• How can we accomplish this in parallel?
 – Partition and sort both datasets in the same manner
 – Example:
 • Suppose R and S were both divided into ten files, partitioned in the same manner by the join key
 • We simply need to merge join the first file of R with the first file of S, the second file of R with second of S, etc.

• In MapReduce:
 – Map over one dataset, read from other corresponding partition
 – No reducers necessary (unless to repartition or resort)

• Consistently partitioned datasets: realistic to expect?
 – Yes. Mostly MapReduce jobs are part of a workflow...
In-Memory Join

• Basic idea: load one dataset into memory, stream over other dataset
 – Works if R << S and R fits into memory
 – Called a “hash join” in database terminology

• MapReduce implementation
 – Distribute R to all nodes
 – Map over S, each mapper loads R in memory, hashed by join key
 – For every tuple in S, look up join key in R
 – No reducers, unless for regrouping or resorting tuples
In-Memory Join: Variants

• Striped variant:
 – What if R is too big to fit into memory?
 – Divide R into R₁, R₂, R₃, ... s.t. each Rₙ fits into memory
 – Perform in-memory join: ∀n, Rₙ ⋈ S
 – Take the union of all join results

• Memcached join:
 – Load R into memcached
 – Replace in-memory hash lookup with memcached lookup
 – Memcached capacity >> RAM of individual node
 – Memcached scales out with cluster
 – Memcached is fast (basically, speed of network)
 – Batch requests to balance the latency costs
Which join to use?

- In-memory join > map-side join > reduce-side join
 - Why?

- Limitations of each?
 - In-memory join: memory
 - Map-side join: sort order and partitioning
 - Reduce-side join: general purpose
Processing Relational Data: Summary

• MapReduce algorithms for processing relational data:
 – Group by, sorting, partitioning are handled automatically by shuffle/sort in MapReduce
 – Selection, projection, and other computations (e.g., aggregation), are performed either in mapper or reducer
 – Multiple strategies for relational joins

• Complex operations require multiple MapReduce jobs
 – Example: top ten URLs in terms of average time spent
 – Opportunities for automatic optimization
Issues with MapReduce

• Java verbosity
 – Writing low level MapReduce code is slow
 – Need a lot of expertise to optimize MapReduce code
 – Prototyping takes significant time and requires manual compilation
 – A lot of custom code is required
 • Even simple functions such as sum and avg, you need to write reduce methods
 – Hard to manage more complex MapReduce job chains
• Pig is a high level language on top of Hadoop MapReduce (Next Lecture)
 – Similar to declarative SQL
 • Easier to get started
 – In comparison to Hadoop MapReduce:
 • 5% of the code
 • 5% of the time
Adapting Algorithms to MapReduce

• Designed a classification on how the algorithms can be adapted to MapReduce [Srirama et al, FGCS 2012]
 – Algorithm \rightarrow single MapReduce job
 • Monte Carlo, RSA breaking
 – Algorithm \rightarrow n MapReduce jobs
 • CLustering LARge Applications - CLARA
 – Each iteration in algorithm \rightarrow single MapReduce job
 • K-medoids (Clustering)
 – Each iteration in algorithm \rightarrow n MapReduce jobs
 • Conjugate Gradient

• Applicable especially for Hadoop MapReduce

Issues with Hadoop MapReduce

- It is designed and suitable for:
 - Data processing tasks
 - Embarrassingly parallel tasks

- Has serious issues with iterative algorithms
 - Long "start up" and "clean up" times ~17 seconds
 - No way to keep important data in memory between MapReduce job executions
 - At each iteration, all data is read again from HDFS and written back to HDFS, at the end
 - Results in a significant overhead in every iteration
Alternative Approaches - 1

- Restructuring algorithms into non-iterative versions
 - Can we change class 3 & 4 algorithms into class 1 or 2?

- **Iterative k-medoid clustering algorithm in MapReduce**
 - **Map**
 - Find the closest medoid and assign the object to the cluster of the medoid
 - Input: (cluster id, object)
 - Output: (new cluster id, object)
 - **Reduce**
 - Find which object is the most central and assign it as the new medoid of the cluster
 - Input: (cluster id, (list of all objects in the cluster))
 - Output: (cluster id, new medoid)
Alternative Approaches – 1 - continued

• CLARA was designed to make PAM algorithm more scalable [Kaufman and Rousseeuw (1990)]
 – CLARA applies PAM on random samples of the original dataset

• CLARA in MapReduce
 – The algorithm can be reduced to 2 MapReduce Jobs

• MapReduce job I (Finding the Candidate sets)
 – Map: (Assign random key to each point)
 • Input: < key, point >
 • Output < random key, point >
 – Reduce: (Pick first S points and use k-medoids on them)
 • Output < key, k-medoids(S points) >
 – result of k-medoids() is a set of k medoids
CLARA in MapReduce - continued

- **MapReduce job II** (Measuring the quality over whole data set)
 - Map: (Find each points distance from it's closest medoid, for each candidate set)
 - Input: < key, point >
 - Output: < candidate set key, distance >
 - C different sums, one for each candidate set
 - Reduce: (Sum distances)

- Candidate set and respective medoids with minimum sum will decide the clusters
Alternative Approaches - 2

• Using alternative MapReduce frameworks that are designed to handle iterative algorithms
 – In memory processing
 – Spark *(Lecture 8)*
Alternative Approaches - 3

• Alternative distributed computing models such as Bulk Synchronous Parallel model [Valiant, 1990] [Jakovits et al, HPCS 2013]

• Available BSP frameworks:
 – Graph processing: jPregel & Giraph (Lecture 11)
This week in lab...

• You’ll try Joins in MapReduce
Next Lecture

- Higher level scripting languages for distributed data processing - Pig
References

• Data-Intensive Text Processing with MapReduce
 Authors: Jimmy Lin and Chris Dyer

THANK YOU

srirama@ut.ee
Issues with MapReduce

• Java verbosity
• Hadoop task startup time
• Not good for iterative algorithms

 – Writing low level MapReduce code is slow
 – Need a lot of expertise to optimize MapReduce code
 – Prototyping requires compilation
 – A lot of custom code is required
 – Hard to manage more complex MapReduce job chains