Distributed Stream Data Processing

Pelle Jakovits

23 November 2018, Tartu
Outline

• Stream data processing
 – Use cases
 – Models

• Stream data processing frameworks
 – Spark Streaming
 – Spark Structured Streaming
 – Apache Storm
 – Apache Kafka
Stream data processing use cases

• **Anomaly Detection**
 – Detect problems in real-time (cyber intrusions, financial fraud, etc)
 – Continuously collect and analyse network traffic, transactions, user behaviour

• **Predictive maintenance**
 – Collect and process performance data from deployed devices
 – Forecast potential faults and service disruptions, predict maintenance cycles

• **Clickstream analytics**
 – Collect and analyse user clicks, routes and behaviour
 – Extract frequent patterns to improve user engagement
 – Personalized recommendations
How to manage stream data in Hadoop?

- Collect data to HDFS
- Process every **N hours** using MapReduce, Pig or Spark

How long before incoming data is processed?

What about time critical applications?

How to push results to external systems as output stream?

Process only the newly added data or the whole data set?
Stream data processing frameworks

• Frameworks/extensions specifically designed for:
 – Low latency data processing
 – Dynamically process incoming data streams
 – Aggregate data processed at different time periods
 – Push results to external systems as output streams

• Two main approaches/models:
 1. Micro-Batch processing
 2. Real-Time stream data processing
Stream processing models

• **Micro-Batch processing**
 – Collect incoming data into a batch/buffer
 – Processing one batch at a time
 – High throughput, High latency
 – Spark Streaming

• **Real-time processing**
 – Process each incoming message right away
 – Low latency, lower throughput
 – Apache Storm, Apache Flink
Spark Streaming
Spark Streaming

• Stream data processing extension on-top of Spark Resilient Distributed Datasets (RDD)
 – Inherently parallel and scalable
• Utilizes the micro-batch processing model
 – Batch size can be freely user-configured or dynamically optimized
 – Batch size of 1 is possible, but not recommended.
• Can reuse most of the existing Spark code
• Lineage based fault tolerance can't handle unbounded dependency chain
 – Automatic fault recovery requires checkpointing to HDFS
Spark streaming concepts

- **Micro-Batch** is a collection of input records processed at once
 - Contains all incoming data that arrived in the last batch interval
- **Batch interval** is the duration in seconds between micro-batches
- Spark **Streaming job** periodically executes a separate **Spark job** for each **Micro-Batch**
- A new collection of output records are returned for each batch
 - Even if the micro-batch is empty (by default)
Input streams

- File systems & TCP socket connections are directly available in StreamingContext API as streaming sources
- File based streaming
 - Reading data from HDFS compatible systems (HDFS, S3, NFS)
 - `streamingContext.textFileStream(dataDirectory)`
 - Spark monitors input directory for any new files
 - A file is considered as input if its modification time is inside the current window
 - Spark tracks processed files, later modifications have no effect
 - Should avoid writing incomplete files into the input directory
Advanced input streams

- Spark uses receivers to manage streams from external systems
- Receivers run inside Spark cluster, parse incoming streams and push data into Spark Streaming
- Advanced sources are available through extra utility libraries that implement a custom receiver
 - Kafka, Flume, Kinesis, MQTT, ZeroMQ
- User-defined receivers can be implemented for custom sources
 - Reliable and un-reliable receivers
 - Advanced features are required for fault tolerance and 24/7
 - Data arrival acknowledgements
 - Block generation and rate control
Creating Streaming Applications

```
sc = SparkContext(appName= "WordCount")
lines = sc.textFile(sys.argv[1])
counts = lines.flatMap(lambda line: line.split(" "))
    .map(lambda x: (x, 1))
    .reduceByKey(lambda a, b: a+b)
counts.saveAsTextFile(sys.argv[2])
sc.stop()
```

```
sc = SparkContext(appName= "StreamWordCount")
ssc = StreamingContext(sc, 1)
lines = ssc.textFileStream(sys.argv[1])
counts = lines.flatMap(lambda line: line.split(" "))
    .map(lambda x: (x, 1))
    .reduceByKey(lambda a, b: a+b)
counts.saveAsTextFiles(sys.argv[2], "txt")
ssc.start()
ssc.awaitTermination()
sc.stop()```
Window operations

- It is possible to use Window functions over micro-batches
- Window functions take 2 window size parameters:
  - **Window length** - The duration of the window (3 on the figure).
  - **Sliding interval** - The interval or step of the window operation (2 on the figure).
Windowed WordCount

• Generate word counts over the last 30 seconds of data, every 10 seconds:

```python
pairs = lines.flatMap(lambda l: l.split(" ")).map(lambda x: (x, 1))
counts = pairs.reduceByKeyAndWindow(lambda x, y: x + y, None, 30, 10)
```

• Can define an inverse reduction function for removing elements from the window
• Allows to avoid recomputing the whole window each time

```python
counts = pairs.reduceByKeyAndWindow(
 lambda x, y: x + y,
 lambda x, y: x - y,
 30, 10
)
```
Manage output

• Save to file storage (HDFS) by default
  – SaveAsTextFiles()
  – SaveAsObjectFiles() *(Not available in Python)*
  – SaveAsHadoopFiles() *(Not available in Python)*

• Pushing data to external systems
  – ForeachRDD(VoidFunction)
  – Apply a user defined function on every RDD partition
  – Defines how/where that partition's data is migrated
ForeachRDD(Function)

• Apply a void function on each RDD partition
• Useful for creating output streams or pushing data to an external systems
  – Data brokers, work queues, databases
• Create a connection to an external system and push the content of RDD partitions there

• ForeachRDD example
  – Publish results to MQTT broker
  – Implement a function that uses MQTT library to publish RDD content as MQTT messages
  – rooms.foreachRDD( publishToMQTT( MQTT_BROKER_URL, MQTT_TOPIC) )
ForeachRDD example

```
VoidFunction<JavaRDD<String>> publishToMQTT(String broker, String topic) {
 return rdd -> {
 rdd.foreachPartition(recordIterator -> {
 if (recordIterator.hasNext()){
 MqttConnectOptions options = new MqttConnectOptions();
 MqttClient mqttClient = new MqttClient(broker,
 MqttClient.generateClientId());
 mqttClient.connect(options);
 recordIterator.forEachRemaining(record -> {
 MqttMessage msg = new MqttMessage(record.getBytes());
 mqttClient.publish(topic, msg);
 });
 mqttClient.disconnect();
 mqttClient.close();
 }
 });
 }
};;
```
Streaming web interface

• Changes in the input data stream can have significant effects on the performance
• Spark provides graphical web interface for tracking the performance of streaming applications
• Two most important metrics are:
  – **Processing Time** - The time it took process a micro-batch.
  – **Scheduling Delay** - How long batches wait in the queue for the previous batches to finish.
• Must avoid Infinitely increasing queues - when **processing time** is consistently longer than **batch interval**
  – Increase allocated computing resources
  – Increase the batch size
  – Turn on backpressure
## Streaming Statistics

Running batches of 1 second for 23 minutes 55 seconds since 2018/01/25 07:47:29 (1420 completed batches, 16860 records)

### Timelines (Last 1000 batches, 0 active, 1000 completed)

#### Input Rate
- Receivers: 1 / 1 active
- Avg: 16.53 records/sec

#### Scheduling Delay
- Avg: 3 minutes 21 seconds

#### Processing Time
- Avg: 847 ms

#### Total Delay
- Avg: 3 minutes 22 seconds
Checkpointing based Fault tolerance

• Spark Lineage would require unbounded partition dependencies

• **Metadata checkpointing**
  – **Configuration** of the streaming application
  – **DStream operations** of the streaming application
  – Incomplete & queued micro-batches

• **Data checkpointing**
  – **Required for stateful** transformations and window operations that combine data across multiple batches

• Can enable **Write ahead logs** to achieve fault-tolerance guarantees
  – Received data gets written into a write-ahead log inside checkpoint directory
  – Avoid data loss on driver failures
Dynamic allocation

- Enables **adaptive streaming applications** by scaling computing resources based on incoming load variations
  - `spark.dynamicAllocation.enabled`
  - `spark.dynamicAllocation.minExecutors`
  - `spark.dynamicAllocation.maxExecutors`
- Automatically adjusts the number of Spark **executors** when processing time becomes longer than batch interval
- Prevents resources from being wasted when the processing time is short
- Requires external **shuffle service** to avoid data loss on scale down
- Can set **minExecutors** to 0, but this introduces cold-start problem
Back-Pressure

- Dynamic Allocation has no effect when already running on max capacity.
- Backpressure can be enabled to make sure that Spark Streaming application stays stable and can handle sudden spikes in load.

- **Back-Pressure** is the concept of **Reactive Streams**
  - 2013 initiative between engineers at Netflix, Pivotal, and Lightbend
  - Receiving side should not be forced to buffer unbounded amount of data.

- Upstream components (Spark Receivers) are notified when Spark cluster can't handle current stream load.
- Maximum rate of Spark Receivers is dynamically adjusted
  - Receiver should then modify how it ingests data from the external system.
- Decisions are made based on current streaming metrics
  - Processing Time, Scheduling Delay.
Structured Streaming

- Based on Spark DataFrames instead of RDD
- Input is a table that is being continuously extended by new rows from an incoming data stream
- Users write Batch-like DataFrame or SQL queries
- Spark executes user operations incrementally on the unbounded input table
- Has semantics to deal with data that arrives late
- Intermediate aggregation dataframes can be kept in memory
  - Continuously updated by preceding queries
Structured Streaming concept

Data stream as an unbounded table

new data in the data stream =
new rows appended to a unbounded table

https://spark.apache.org/docs/2.2.0/structured-streaming-programming-guide.html
Streaming WordCount example

```scala
Define input stream
lines = spark.readStream.format("socket") \\
 .option("host", "localhost").option("port", 9999) \\
 .load()

Split the lines into words
words = lines.select(explode(split(lines.value," ")).alias("word"))
 .groupBy("word").count()

Define output and initiate computation
query = wordCounts \\
 .writeStream \\
 .outputMode("complete") \\
 .format("console") \\
 .start()

query.awaitTermination()
```

# Split the lines into words
# Generate running word count
# Wait until terminated
Triggers and Output modes

- **Trigger** – Controls when the streaming query will be executed
  - *Fixed interval micro-batches* – run once for every micro-batch *(Default)*
  - *One-time micro-batch* – Run streaming application in Batch mode
  - *Continuous trigger* – Experimental Real-Time mode (~ 1 ms goal)

- **Output Mode**
  - *Append mode* - Only new rows since the last trigger will be written out *(Default)*
  - *Complete mode* - The whole DataFrame will be written out after every trigger
  - *Update mode* - Only rows modified since the last trigger will be written out.

```scala
query = wordCounts
 .writeStream
 .outputMode("complete")
 .format("console")
 .trigger(processingTime='2 seconds')
 .start()
```
Spark Streaming issues

- Apache Spark is a *Jack of all trades*
  - *Streaming Machine Learning* (native Streaming Linear Regression & KMeans)
- Not a good support for real Real-Time streaming
  - Micro batching causes high latency
  - Small batches reduce efficiency of Spark parallelization
  - Real-Time triggers are currently in experimental stage in Spark
- Default Spark configuration options may not be suitable for many streaming applications
  - Especially for long running (24/7) streaming jobs
  - Choosing the right batch interval is not a simple task
  - May need significant effort to find suitable configuration
Dealing with issues

- Dynamic allocation when below maximum capacity of the cluster
- BackPressure helps with spikes in stream arrival rate
  - Depend on the framework for optimizing streaming configuration
  - May not work on all receivers
  - Receiver fault tolerance and memory issues
- Use frameworks specialized on real-time stream processing to achieve low latency until Spark Real-Time triggers are out of experimental stage
  - Such as Apache Storm and Apache Flink
- Data flow and queue systems can be used between data sources and Apache Spark to manage incoming and outgoing data streams
  - Such as Apache Kafka
  - Can avoid having to create Spark Receivers by depending on Kafka adapters
Apache Storm

• Designed for low-latency Real-time stream processing
• Uses Apache Thrift for creating language independent applications
  – Any individual service may use a different language
  – May be implemented in multiple languages for portability
  – C++, Java, Python, PHP, Ruby, Erlang, Haskell, C#, JavaScript, etc.
• Storm applications manipulate streams of tuples
  – Tuples can contain labelled objects of any type
• Data Stream processing is defined by a **Topology**, which consists of DAG of **Spots** and **Bolts**
Storm Topology

- Storm **Topology** is a network of spouts and bolts
- **Spout** is a source of data stream
- **Bolt** defines a single (scalable) data processing operation
Storm applications

• Storm integrates with most common queueing and database technologies
  – Kestrel, RabbitMQ / AMQP, Kafka, Amazon Kinesis
• Users can implement Spouts for other external systems
• Topologies, Spouts and Bolts can be defined in any language
  – Natively support for JVM languages
  – Spouts and bolts written in other languages communicate to Storm using JSON-based protocol
  – Adapters for Ruby, Python, JavaScript, Perl.
Scalability

- Storm topologies run across a cluster of nodes.
- Each Spout or Bolt can be scaled individually.
- Parallelism can be modified using Storm command-line rebalance command.

http://storm.apache.org/releases/current/Tutorial.html
Storm Example

```java
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("spout", new RandomSentenceSpout(), 5);
builder.setBolt("split", new SplitSentence(), 8).shuffleGrouping("spout");

conf.setMaxTaskParallelism(3);
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("word-count", conf, builder.createTopology());
```

- **Shuffle grouping**: Distribute tuples randomly but evenly across the bolt instances
- **Fields grouping**: Distribute tuples by a field. Tuples with the same field are always routed to the same task.
Fault tolerance

- Workers that execute a subset of a topology are restarted on failure
- If the whole node dies, workers are moved to other nodes
- Storm guarantees at-least-once processing of input tuples.
  - Re-processing happens only when there are failures
- It is possible to have exactly-once processing guarantee by using Trident
  - Higher-level abstraction on top of Storm
  - Similar to having Apache Pig over MapReduce
  - However, it has significant performance overhead
Apache Kafka

- Distributed streaming data broker, queue and storage
- Manage and control data streams
- Publish-Subscribe model with consumer groups
  - Subscribed data is load balanced between consumers in one group
  - Different consumer groups receive same data
- Initially designed for "moving" data between systems
- But also supports stream data processing
  - Filtering, joins, aggregations, etc.
Creating Kafka applications

- Kafka has four main APIs:
  - **Producer API** - Publishing messages to Kafka topics, creating a stream
  - **Consumer API** - Subscribing to Kafka topics for receiving the data stream
  - **Streams API** - Creating stream processor applications that consume input streams, transform data and produce output streams
  - **Connector API** - Building and running adapters that connect Kafka topics to external systems

- Kafka runs as a cluster that can be deployed across multiple datacenters
- Messages are stored to persistent storage and replicated
- Producers can wait for acknowledgement until messages are fully replicated and fault tolerance is guaranteed.
Kafka & Spark
Multi mode integration scenario

- Store all event in an historical archive
- low-latency event-time aggregation
- Alerts
- Real-time Dashboards
- batch reporting
- Exactly once aggregation
- Exactly once

That’s All

• Next weeks practice session is
  – Stream Data Processing with Spark Streaming

• Next week's lecture is
  – Graph processing with Bulk Synchronous Parallel model