Some applications of pairwise independence

Margus Niitsoo

University of Tartu

Research seminar in cryptography
Outline

1. Pairwise independent distributions
2. A simple application
3. $\text{BPP} \subset \Delta_2$
4. Recycling randomness
We study certain special distributions on a set of n different random variables.

Example

<table>
<thead>
<tr>
<th>Z_a</th>
<th>Z_b</th>
<th>Z_c</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.25</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.25</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.25</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.25</td>
</tr>
</tbody>
</table>

It resembles a uniform distribution. However...
We mostly use the formalization of a random hash function $h_r : \mathbb{Z}_{2^n} \rightarrow \mathbb{Z}_{2^m}$ where $h_r(x)$ and $h_r(y)$ are independent if $x \neq y$.

Such functions are easy to construct taking $h_{(a,b)}(x) = ax + b$ where $(a, b) \in \mathbb{Z}_{2^n} \times \mathbb{Z}_{2^n}$ is chosen uniformly.

We only need $2n$ random bits instead of $n2^n$ that way.
Direct application

Main idea - take a randomized algorithm on a uniform distribution and see if it works if we substitute with a pairwise independent one.
Toy example problem

Example

Problem: given a graph $G = (V, E)$, find a two-valued vertex colouring $\chi : V \rightarrow \{0, 1\}$ that gives

$$c(\chi) = |\{(x, y) \in E : \chi(x) \neq \chi(y)\}| \geq \frac{|E|}{2}.$$

Solution: take χ to be a hash function chosen from a pairwise independent distribution and try all the possibilities.
Complexity classes - terminology

- Language $\mathcal{L} \subset \{0, 1\}^n$ and a potential sentence $x \in \{0, 1\}^n$
- Polynomial-time predicate $P : \{0, 1\}^n \times \{0, 1\}^m \rightarrow \{0, 1\}$
- Set of witnesses for $W_x = y \in \{0, 1\}^m | P(x, y) = 1$
Complexity classes

- **P**: $m = 0$.
- **NP**: $|W_x| > 0$ for $x \in \mathcal{L}$ and 0 elsewhere.
- **RP**: $\frac{|W_x|}{2^m} > c_{yes}$ for $x \in \mathcal{L}$ and 0 elsewhere.
- **BPP**: $\frac{|W_x|}{2^m} > c_{yes}$ for $x \in \mathcal{L}$ and $\frac{|W_x|}{2^m} < c_{no}$ elsewhere.
Motivation behind RP and BPP
Relation to deterministic algorithms?
Polynomial Hierarchy

- Σ_2 - $\exists z : \forall w : P(x, z, w) = 1$
- Π_2 - $\forall z : \exists w : P(x, z, w) = 1$
- $\Delta_2 = \Sigma_2 \cap \Pi_2$
The result

- Turns out that $BPP \subseteq \Delta_2$
- Proof first shows (via hash functions) that $BPP \subseteq \Pi_2$ and then applies symmetry considerations.
Recycling: (tr. v) To put or pass through a cycle again, as for further treatment.
Always recycle, because good randomness is hard to come by.
What is really going on?

Essentially, we are examining different pseudorandom generators that take a (truly) random seed and use it to generate more seemingly random bits.

We use the framework of choosing potential witnesses for $x \in \mathcal{L} \in RP$.
The Generators

We describe 4 different generators

<table>
<thead>
<tr>
<th>Generator</th>
<th>Random bits</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chor-Goldreich</td>
<td>$O(r)$</td>
<td>$O\left(\frac{1}{k}\right)$</td>
</tr>
<tr>
<td>Nisan</td>
<td>$O(r \log k)$</td>
<td>$2^{-O(k)}$</td>
</tr>
<tr>
<td>Karp-Pippenger-Sipser</td>
<td>$O(r)$</td>
<td>$O(k^{-0.1})$</td>
</tr>
<tr>
<td>Ajtai-Komlós-Szemerédi</td>
<td>$r + O(k)$</td>
<td>$2^{-O(k)}$</td>
</tr>
</tbody>
</table>

Error is essentially the chance of not finding a witness given there are at least an ϵ fraction of them.
Randomly choose $r = (a, b)$, then use values $h_r(0), \ldots, h_r(k)$
Take $l = \lg k$, choose $h_1, \ldots, h_l : \{0, 1\}^r \to \{0, 1\}^r$ uniformly from PID. Also choose a seed value $y \in \{0, 1\}^r$.

Let $I = \{i_1, \ldots, i_m\} \subset \{1, \ldots, l\}$ (where $i_1 < \cdots < i_m$) and take $y_I = h_{i_1}(\ldots h_{i_m}(y) \ldots)$.

Use all such y_I.

An Expander is a d-regular graph whose adjacency matrix has a small enough second largest eigenvalue.

What it really means is that the neighbours of a randomly chosen node are usually nearly uniformly distributed.

Both random generators build an expander with the vertex set $V = \{0, 1\}^r$.

Karp-Pippinger-Sipser generator uses the random seed to choose a vertex and then uses its neighbouring vertices.

Ajtai-Komlós-Szemerédi generator performs a random walk starting from a random vertex and uses the vertices encountered.
Thank you for listening

Comments? Questions?