Problem 1: Reductions

Consider the following languages:

- \text{formulaSAT} := \{f : f \text{ is a satisfiable Boolean formula}\}.
- \text{SAT} := \{f : f \text{ is a satisfiable CNF formula}\}.
- \text{CLIQUE} := \{(G,k) : G \text{ contains a k-clique}\}. A graph \(G\) is said to contain a k-clique if there is a set of \(k\) vertices in \(G\) such that each of these vertices has an edge to each other vertex (a complete subgraph of size \(k\)).
- \text{INDSET} as described in the lecture (independent set problem; party problem).
- \text{co-TAUTO} := \{f : f \text{ is not a tautology}\}. A tautology is a Boolean formula that is true for any assignments of truth-values to the variables.

For each pair \(A, B \in \{\text{formulaSAT}, \text{SAT}, \text{CLIQUE}, \text{INDSET}, \text{co-TAUTO}\}\), show that \(A \leq_p B\). (I.e., that \(A\) is polynomial-time Karp reducible to \(B\).)

\textbf{Note:} The fact \(\text{SAT} \leq_p \text{INDSET}\) will be shown in the practice on Tuesday, Sep 13.

\textbf{Note:} None of these reductions need an elaborate construction like we use in the practice for showing that \(\text{SAT} \leq_p \text{INDSET}\). Each proof should just be a few lines. You are allowed to use facts we already showed, e.g., \(\text{SAT} \leq_p \text{INDSET}\) and \(\text{SAT}\) is NP-complete.

\textbf{Solution.} We know that \(\text{SAT}\) is NP-complete and thus NP-hard. By definition of NP-hardness, \(A \in \text{NP}\) implies \(A \leq_p \text{SAT}\). Since all the languages listed in this problem are easily seen to be in \(\text{NP}\), we have:

\[\forall A \in \{\text{formulaSAT, CLIQUE, INDSET, co-TAUTO}\} : A \leq_p \text{SAT} \quad (1) \]

Any CNF formula is also a Boolean formula (the CNF formulas are a special case of the Boolean formulas). Thus \(\text{SAT}\) can be reduced to \(\text{formulaSAT}\) using the following reduction: \(f(\varphi) := \varphi\) if \(\varphi\) is a CNF formula\(^2\) and \(f(x) := B_0\) if \(x\) is not a syntactically valid CNF formula. Here \(B_0\) is a syntactically invalid Boolean formula. Obviously \(f(x) \in \text{formulaSAT}\) iff \(x \in \text{SAT}\). \(f\) is polynomial-time computable. Hence:

\[\text{SAT} \leq_p \text{formulaSAT} \quad (2) \]

\(^1\)Certificates are: satisfying assignment for \(\text{formulaSAT}\), a clique for \(\text{CLIQUE}\), an independent set for \(\text{INDSET}\), and an assignment that makes \(f\) false for \(\text{co-TAUTO}\).

\(^2\)If the encoding of CNF-formulas is different, then \(f(\varphi)\) should be the re-encoding of \(\varphi\) as a Boolean formula.
A Boolean formula B is satisfiable iff B is not always false iff $\neg B$ is not always true iff $\neg B$ is not a tautology. Thus with $f(B) := \neg B$ (and $f(x) := x$ for syntactically invalid formulas x), we have $B \in \text{formulaSAT}$ iff $f(B) \in \text{co-TAUTO}$. f is polynomial-time computable. Hence:

$$\text{formulaSAT} \leq_p \text{co-TAUTO} \quad (3)$$

The following was shown in the practice session:

$$\text{SAT} \leq_p \text{INDSET} \quad (4)$$

A set S is an independent set in a graph G iff S is a clique in the graph \tilde{G}. Here \tilde{G} denotes the graph that has an edge between v, w iff G does not have an edge between v, w. Let $f(G, k) := (\tilde{G}, k)$. (And $f(x) = x$ for syntactically invalid inputs.) Then $x \in \text{INDSET}$ iff $f(x) \in \text{CLIQUE}$. f is polynomial-time computable. Hence:

$$\text{INDSET} \leq_p \text{CLIQUE} \quad (5)$$

The following graph summarizes all those reductions. $\xrightarrow{A} \xrightarrow{B}$ stands for $A \leq_p B$.

\begin{center}
\begin{tikzpicture}
 \node[shape=circle,draw=black] (A) at (0,0) {SAT};
 \node[shape=circle,draw=black] (B) at (2,0) {CLIQUE};
 \node[shape=circle,draw=black] (C) at (0,-2) {INDSET};
 \node[shape=circle,draw=black] (D) at (2,-2) {co-TAUTO};
 \node[shape=circle,draw=black] (E) at (0,-4) {formulaSAT};

 \draw[->] (A) -- (B);
 \draw[->] (A) -- (C);
 \draw[->] (A) -- (D);
 \draw[->] (A) -- (E);
 \draw[->] (B) -- (C);
 \draw[->] (B) -- (D);
 \draw[->] (C) -- (D);
 \draw[->] (C) -- (E);
 \draw[->] (D) -- (E);
\end{tikzpicture}
\end{center}

We can see that from any node to any other node, there is a chain of reductions. Since $A \leq_p B \leq_p C$ implies $A \leq_p C$ (this case be easily seen from the definition of Karp reductions), it follows that each language in the graph has a reduction to each other language.

In particular, all those languages are NP-complete, because they are in NP and all can be reduced to SAT.

Problem 2: NP with unbounded certificates

An important condition in the definition of NP is that the certificate has polynomially-bounded length. Without that condition, the definition would look as follows (the following is not an established class!):
Definition 1 (NP with unbounded witnesses) A language L is in hugeNP iff there exists a polynomial-time Turing machine M such that for all x it holds that:

\[x \in L \iff \exists u \in \{0,1\}^\ast : M(x,u) = 1. \tag{6} \]

Note: u is not restricted in its length in this definition.

Show that $\text{HALT} \in \text{hugeNP}$ where HALT is the Halting Problem.

Hint: A certificate for $(m,\alpha) \in \text{HALT}$ could be the string 1^n where n is the number of steps that $M_m(\alpha)$ runs. The notation 1^n means a bitstring consisting of n ones (e.g., $1^{10} = 1111111111$). So you just need to construct the TM M from **Definition 1** and explain why it is polynomial-time.

Solution. Let $M(x,u)$ do the following:

- If x is not a pair (m,α) consisting of a TM description m and a TM input α, return 0.
- If u is not a string of the form 1^n, return 0.
- If $x = (m,\alpha)$ and $u = 1^n$, then run $M_m(\alpha)$ for n steps. If $M_m(\alpha)$ halts within n steps, return 1. Else return 0.

If $(m,\alpha) \notin \text{HALT}$, then $\nexists u \in \{0,1\}^\ast : M(x,u) = 1$, since $M_m(\alpha)$ never stops and hence $M((m,\alpha),u)$ cannot output 1. If $(m,\alpha) \in \text{HALT}$, then with $u := 1^n$ where n is the running time of $M_m(\alpha)$, we have $M(x,u) = 1$. So (6) holds for all x.

It remains to show that M is polynomial-time. Checking the first two conditions from the definition of M is obviously in polynomial-time. The time T required to run $M_m(\alpha)$ for n steps is polynomial in n and the sizes of m,α. Thus $T \leq p(n + |m| + |\alpha|) = p(|u| + |m| + |\alpha|) = p(|((m,\alpha),u)|)$. Thus the TM M always runs in polynomial-time in the length of its input, as required.

Hence $\text{HALT} \in \text{hugeNP}$.

This shows that the definition of hugeNP is probably not what we wanted. In fact, with some extra effort we can show that hugeNP actually coincides with RE, the class of “recursively enumerable” languages.

3We call M polynomial-time iff there exists a polynomial-time p such that for all x,u, the running time of $M(x,u)$ is bounded by $p(|x| + |u|)$.

4That is, $\text{HALT} = \{(m,\alpha) : M_m(\alpha) \text{ terminates}\}$ where M_m is the TM with description n.
