Problem 1: LFSRs

An LFSR containing four bits is given. It is preloaded with a key $x_3x_2x_1x_0$. In each step, the next bit that is put into the left of the LFSR is the XOR of the 1., 2., and 4. bit from the left of the LFSR. (E.g., after the first step, the LFSR outputs x_0 and contains $x_4x_3x_2x_1$ with $x_4 = x_3 \oplus x_2 \oplus x_0$.) Let y_0, y_1, \ldots denote the sequence of output bits of the LFSR.

(a) For $i = 0, \ldots, 8$, give y_i as a function of the initial key. (I.e., give a formula for computing y_i given x_3, x_2, x_1, x_0.)

(b) Due to some side information, you know that $y_5y_6y_7y_8 = 1001$. What is the initial key $x_3x_2x_1x_0$?

Problem 2: Linear block ciphers

Consider a block cipher E taking $2n$ bits to $2n$ bits that consists of a Feistel network with a round function $F(k, m_{\text{half}})$ that has the following property:

For each possible key k, there exists an $n \times n$ matrix $A^{(k)}$ such that for all n-bit messages m_{half}, we have $F(k, m_{\text{half}}) = A^{(k)}m_{\text{half}}$. (I.e., for a fixed key, F is linear.)

(Reminder: since we operate on bits, matrix multiplication is done modulo 2, i.e., $(A^{(k)}m_{\text{half}})_i = \sum_j A^{(k)}_{ij}m_{\text{half}} j \mod 2$.)

We will show that this block cipher cannot be secure under chosen plaintext attacks (by giving an attack).

Note: Even if you do not manage to solve the first parts of this problem, you can still solve the later parts by just assuming that you have solved the first ones.[1]

(a) Let m be a $2n$-bit message within the Feistel network, before swapping the two halves.

Construct a $2n \times 2n$ matrix B such that Bm is the result of swapping the two halves.

(I.e., the first half of m is the second half of Bm and vice versa.)

(b) Let $m = m_1 \parallel m_2$ be a $2n$-bit message within the Feistel network. Let $m' = (m_1 \oplus F(k, m_2)) \parallel m_2$ be the result of applying F.

[1] The following argument is not allowed, though: “We show (c). Assume that I have solved (b). Then in my write-up, there would be a write-up of the solution of (b). Obviously, there is not. Thus we have a contradiction, false follows. From false anything follows, in particular (c). q.e.d.”
Construct a matrix $C^{(k)}$ such that $m' = C^{(k)}m$ for all m.

Hint: Try to first write down a formula (involving a sum) for the i-th bit of m'. Then you can read off the definition of $C^{(k)}$. $C^{(k)}$ may depend on $A^{(k)}$.

(c) Give a formula for the matrix $D^{(k)}$ such that $D^{(k)}m = E(k, m)$ for all m. $D^{(k)}$ may depend on B and $C^{(k)}$.

(d) Let m_i be the message $0\ldots01\ldots0$ with 1 on the i-th position. What is $D^{(k)}m_i$? How can we reconstruct the whole matrix $D^{(k)}$ given $D^{(k)}m_i$ for all i (efficiently)?

Note: You do not actually need the formulas derived in the previous steps. The only reason for finding those formulas was to show that the matrix $D^{(k)}$ exists at all.

(e) You are given a ciphertext $c = E(k, m)$ and you are allowed to make chosen plaintext queries (i.e., you may ask for $E(k, m')$ for any message m'). How do you find out m?

Hint: Find $D^{(k)}$ first.

(f) Explain why DES is susceptible to the attack described above if the S-boxes are linear.

Problem 3: Security definitions

Your task is to write a security definition in Python (or another language, but we provide a template in Python). The goal of this is to give you a better understanding what security definitions mean, besides just being formulas. We illustrate this by writing the security definition of PRGs in Python:

```python
#!/usr/bin/python

# For simplicity, we fix domain and range of PRGs here:
# The domain is the set of 32-bit integers
# The random is the set of ten-element lists of 32-bit integers
# (equivalent to 320-bit integers)
import random

# A very bad pseudo-random generator
# Seed is supposed to be a 32-bit integer
# Output is a ten element list of 32-bit integers
def G(seed):
    return [4267243**i*seed % 2**32 for i in range(1,11)]
```

2I.e., for each S-box, each output bit is a linear combination of the input bits.
def prg_game(G, adv):
 b = random.randint(0, 1) # Random bit
 seed = random.randint(0, 2**32 - 1) # Random seed
 rand = [random.randint(0, 2**32 - 1) for i in range(10)] # Truly random output
 if b == 0:
 badv = adv(G(seed))
 else:
 badv = adv(rand)
 return b == badv

def adv(rand):
 if rand[1] == 4267243 * rand[0] % 2**32:
 return 0
 else:
 return 1

def test_prg(G, adv):
 num_true = 0
 num_tries = 100000
 for i in range(num_tries):
 if prg_game(G, adv):
 num_true += 1
 ratio = float(num_true) / num_tries
 print ratio

Here G is an implementation of a pseudo-random generator (a rather bad one). And prg_game is a function that implements the game from the security definition of PRGs. That is, it takes a PRG G, and an adversary adv, and calls adv either with randomness or the output of G. If the adversary guesses correctly which of the two was the case, prg_game returns True, else False.

The function test_prg tries out whether a given adversary is successful or not by counting how often he guesses right. (Of course, this does not replace a proof: a statistic does not give certainty, and also we cannot know whether other adversaries are successful. But it illustrates the use of the security definition.)

We have also written an example adversary adv that breaks the PRG G. For simplicity, let both the message and the key space consist of 32-bit integers. But note that you are not supposed to use brute force attacks.

Your task:
(a) Write the security definition for IND-OT-CPA as a Python program. (Recall, in IND-OT-CPA, the adversary is called twice, so you will need two functions adv1 and adv2. Also pay attention to the following: the adversary should not be allowed to output messages that are not in the message space.)
(b) Write an adversary that breaks the encryption scheme enc defined in the source code below. (This adversary should have a success probability, as measured by $test_{\text{indotcpa}}$ of at least 0.95.)

(c) [Bonus points] Write the definition of IND-CPA 3 (For this, note that in Python, you can define functions within the body of other functions, and pass such functions are arguments to other functions. This is very convenient for implementing oracles.)

Here is a template for your solution. You need to fill in code where there are ???.

```python
#!/usr/bin/python

# For simplicity, the message space and the key space consists of 32-bit integers
# And the ciphertext space consists of all integers (possibly longer)

import random

# A bad encryption scheme
def enc(key,msg):
    return key*msg

# The IND-OT-CPA game
def indotcpa_game(enc,adv1,adv2):
    ???

# The adversary breaking the above encryption scheme
# (Consisting of two functions, since the adversary is invoked twice by the game)
def adv1():
    ???
def adv2(c):
    ???

def test_indotcpa(enc,adv1,adv2):
    num_true = 0
    num_tries = 100000
    for i in range(num_tries):
        if indotcpa_game(enc,adv1,adv2): num_true += 1
    ratio = float(num_true)/num_tries
    print ratio

# An output near 0.5 means no attack
# An output neat 0.0 or 1.0 means a successful attack
test_indotcpa(enc,adv1,adv2)
```

3Which will be covered in the lecture before the deadline of this homework.