Arvutiteaduse instituut
  1. Kursused
  2. 2025/26 sügis
  3. Seletatav automatiseeritud masinõpe (LTAT.02.023)
EN
Logi sisse

Seletatav automatiseeritud masinõpe 2025/26 sügis

  • Main
  • Lectures
  • Paper

Research papers

Paper titlePaper urlSummary
Neural Architecture Search without Training (ICML 2021)[arXiv](https://arxiv.org/abs/2006.04647)Proposes zero-cost NAS by predicting network performance from untrained weights, enabling architecture search in seconds without training.
AutoFormer: Searching Transformers for Visual Recognition (ICCV 2021)[arXiv](https://arxiv.org/abs/2107.00651)One-shot NAS framework for Vision Transformers, producing architectures that outperform DeiT/ViT baselines on ImageNet.
FBNetV3: Joint Architecture-Recipe Search using Predictor Pretraining (CVPR 2021)[arXiv](https://arxiv.org/abs/2006.02049)Jointly searches architectures and training recipes, matching EfficientNet with fewer FLOPs and improving detection tasks.
NAS-Bench-360: Benchmarking NAS on Diverse Tasks (NeurIPS D&B 2022)[arXiv](https://arxiv.org/abs/2110.05668)Benchmarking suite covering 10 diverse domains, revealing limits of NAS generalization beyond vision tasks.
DEHB: Evolutionary Hyperband for Scalable, Robust and Efficient HPO (IJCAI 2021)[arXiv](https://arxiv.org/abs/2011.09854)Combines Differential Evolution with Hyperband for efficient HPO, achieving up to 1000× speedups over random search.
HyperBO: Pre-trained Gaussian Processes for Bayesian Optimization (JMLR 2024)[JMLR](https://jmlr.org/papers/v25/23-0212.html)Uses meta-learning to pre-train GP priors for Bayesian optimization, finding hyperparameters ~3× more efficiently.
Auto-sklearn 2.0: Hands-free AutoML via Meta-Learning (JMLR 2022)[JMLR](https://jmlr.org/papers/v23/20-1121.html)Next-gen Auto-sklearn with meta-learning warm starts and resource-aware scheduling, achieving faster and more accurate AutoML.
FLAML: A Fast and Lightweight AutoML Library (MLSys 2021)[arXiv](https://arxiv.org/abs/2009.09288)Lightweight AutoML library focusing on cost-efficient tabular learning, outperforming frameworks under tight time budgets.
CAAFE: Context-Aware Automated Feature Engineering with LLMs (NeurIPS 2023)[arXiv](https://arxiv.org/abs/2306.16487)Leverages large language models to automatically generate interpretable new features, improving tabular model performance.
LoRA: Low-Rank Adaptation of Large Language Models (ICLR 2022)[arXiv](https://arxiv.org/abs/2106.09685)Efficiently fine-tunes large models by injecting low-rank trainable matrices, reducing tuned parameters up to 10,000×.
Quick-Tune: Quickly Learning Which Pretrained Model to Finetune and How (ICLR 2024)[OpenReview](https://openreview.net/forum?id=hf5SjDKQVY)Automates selection of pretrained models and fine-tuning strategies using meta-learned performance predictors.
TabPFN: A Transformer That Solves Small Tabular Classification Problems in a Second (ICLR 2023)[OpenReview](https://openreview.net/forum?id=Wp8sQyx6ydl)Foundation model for tabular data, solving small tabular tasks in one forward pass without training.
TabPFN v2: Accurate Predictions on Small Data with a Tabular Foundation Model (Nature 2025)[Nature](https://www.nature.com/articles/s41586-025-08505-z)Extends TabPFN to larger datasets, regression, missing values, and time-series, showing broader foundation model utility.
FedNAS: Federated Deep Learning via Neural Architecture Search (ICLR 2022)[OpenReview](https://openreview.net/forum?id=F9D-1LGeXx)Automates NAS in federated settings, letting clients collaboratively find architectures under data heterogeneity.
HyperFD: Privacy-Preserving Online AutoML for Face Detection (CVPR 2022)[CVPR](https://openaccess.thecvf.com/content/CVPR2022/html/Yan_HyperFD_Privacy-Preserving_Online_AutoML_for_Domain-Specific_Face_Detection_CVPR_2022_paper.html)Privacy-preserving AutoML for face detection, tuning models using meta-features without sharing raw images.
AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting (AutoML Conf 2023)[PMLR](https://proceedings.mlr.press/v220/shchur23a.html)Open-source AutoML library for time-series, ensembling diverse models to generate accurate point and probabilistic forecasts.
AutoClust: A Framework for Automated Clustering based on Cluster Validity Indices (ICDM 2020)[PDF](https://ieeexplore.ieee.org/document/9338424)Automates clustering algorithm and hyperparameter selection using validity indices, making clustering AutoML practical.
AMLB: An AutoML Benchmark (JMLR 2024)[JMLR](https://jmlr.org/papers/v25/22-0493.html)Standard benchmark framework comparing 9 AutoML systems on 100+ tasks, enabling fair and reproducible evaluation.
SmartCal: A Novel Automated Approach to Classifier Probability Calibration (AutoML 2025)[OpenReview](https://openreview.net/forum?id=SmartCal2025)An AutoML framework for the calibration of supervised classification machine learning models.
  • Arvutiteaduse instituut
  • Loodus- ja täppisteaduste valdkond
  • Tartu Ülikool
Tehniliste probleemide või küsimuste korral kirjuta:

Kursuse sisu ja korralduslike küsimustega pöörduge kursuse korraldajate poole.
Õppematerjalide varalised autoriõigused kuuluvad Tartu Ülikoolile. Õppematerjalide kasutamine on lubatud autoriõiguse seaduses ettenähtud teose vaba kasutamise eesmärkidel ja tingimustel. Õppematerjalide kasutamisel on kasutaja kohustatud viitama õppematerjalide autorile.
Õppematerjalide kasutamine muudel eesmärkidel on lubatud ainult Tartu Ülikooli eelneval kirjalikul nõusolekul.
Courses’i keskkonna kasutustingimused