Arvutiteaduse instituut
  1. Kursused
  2. 2018/19 kevad
  3. Loomuliku keele töötlus (LTAT.01.001)
EN
Logi sisse

Loomuliku keele töötlus 2018/19 kevad

  • HomePage
  • Schedule
  • Labs
  • Reading Tests
  • Homeworks
  • Project
  • Results

Course schedule

This schedule is tentative and may be changed during the semester as necessary.

Textbooks:

  • Yoav Goldberg, 2017. Neural Network Methods for Natural Language Processing
WeekDateTopic
2413.02.2019Introduction to NLP [slides] [video]
2520.02.2019Language modeling [slides] [video]
2627.02.2019Word embeddings [slides] [video]
2706.03.2019Text classification [slides] [video]
2813.03.2019Sequence tagging [slides] [video]
2920.03.2019Morphology [slides] [video]
3027.03.2019Syntactic parsing [slides] [video]
3103.04.2019Lexical semantics [slides] [video]
3210.04.2019Attention mechanism [slides] [video]
3317.04.2019Question answering [slides] [video]
3424.04.2019Dialog systems [slides] [video]
3501.05.2019Spring Day - no lecture
3608.05.2019Machine translation - Mark Fišel [slides]
3715.05.2019Speech recognition - Tanel Alumäe (TUT) [slides] [video]
3822.05.2019Speech synthesis - Tambet Matiisen [slides] [video]
3929.05.2019NLP in industry - Risto Hinno (FeelingStream) [slides] [video]

Extra reading

  • Lecture 1: Introduction
    • Natural language processing: a historical review
    • A Review of the Neural History of Natural Language Processing
    • Natural language processing: an introduction
  • Lecture 2: Language modeling
    • Language Model: A Survey of the State-of-the-Art Technology
    • An Empirical Study of Smoothing Techniques for Language Modeling
    • A Neural Probabilistic Language Model
    • Recurrent Neural Network Based Language Model
    • Strategies for Training Large Vocabulary Neural Language Models
    • The Unreasonable Effectiveness of Recurrent Neural Networks
    • Character-Aware Neural Language Models
  • Lecture 3: Word embeddings
    • Collobert et al., 2011.Natural Language Processing (Almost) from Scratch
    • Mikolov et al., 2013. Linguistic Regularities in Continuous Space Word Representations
    • Mikolov et al., 2013. Efficient Estimation of Word Representations in Vector Space
    • Goldberg and Levy, 2014. word2vec Explained: Deriving Mikolov et al.’s Negative-Sampling Word-Embedding Method
    • Bojanowski et al., 2017. Enriching Word Vectors with Subword Information
    • Blog post: The Illustrated BERT, ELMo, and co. (How NLP Cracked Transfer Learning)
    • Ling et al., 2015. Finding Function in Form: Compositional Character Models for Open Vocabulary Word Representation
    • Schnabel et al., 2015. Evaluation methods for unsupervised word embeddings
    • Pennington et al., 2014. GloVe: Global Vectors for Word Representation
    • Peters et al., 2018. Deep contextualized word representations
    • Devlin et al., 2018. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
  • Lecture 4: Text classification
    • Kim, 2014. Convolutional Neural Networks for Sentence Classification
    • Joulin et al., 2017. Bag of Tricks for Efficient Text Classification
    • Lai et al., 2015. Recurrent Convolutional Neural Networks for Text Classification
    • Zhou et al., 2015. A C-LSTM Neural Network for Text Classification
    • Zhang et al., 2015. Character-level Convolutional Networks for Text Classification
    • Aggarwal and Zhai, 2012. A Survey of Text Classification Algorithms
  • Lecture 7: Syntactic parsing
    • Kipperwasser and Goldberg, 2016. Simple and Accurate Dependency Parsing Using Bidirectional LSTM Feature Representations
    • Dyer et al., 2015. Transition-Based Dependency Parsing with Stack Long Short-Term Memory
    • Dozat el al., 2017. Stanford’s Graph-based Neural Dependency Parser at the CoNLL 2017 Shared Task
  • Lecture 8: Lexical semantics
    • Blog post: The Illustrated BERT, ELMo, and co. (How NLP Cracked Transfer Learning)
    • Peters et al., 2018. Deep contextualized word representations
    • Devlin et al., 2018. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
  • Lecture 9: Attention
    • Bahdanau et al., 2015. Neural machine translation by jointly learning to align and translate
    • Luong et al., 2015. Effective approaches to attention-based neural machine translation
    • Vaswani et al., 2017. Attention is all you need
    • Incorporating Copying Mechanism in Sequence-to-Sequence Learning
    • Merity et al., 2016. Pointer sentinel mixture models
    • Huang et al., 2016. Attention-based multimodal machine translation
    • Yang et al., 2016. Hierarchical attention networks for document classification
    • Xu et al., 2015. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
    • Cheng et al., 2016. Long Short-Term Memory-Networks for Machine Reading
    • Allamanis et al., 2016. A Convolutional Attention Network for Extreme Summarization of Source Code
  • Lecture 10: Question answering
    • Jurafsky and Martin, 2018. Speech and language processing, 3rd ed draft, chapter 23
    • Chen et al., 2017. Reading Wikipedia to Answer Open-Domain Questions
  • Arvutiteaduse instituut
  • Loodus- ja täppisteaduste valdkond
  • Tartu Ülikool
Tehniliste probleemide või küsimuste korral kirjuta:

Kursuse sisu ja korralduslike küsimustega pöörduge kursuse korraldajate poole.
Õppematerjalide varalised autoriõigused kuuluvad Tartu Ülikoolile. Õppematerjalide kasutamine on lubatud autoriõiguse seaduses ettenähtud teose vaba kasutamise eesmärkidel ja tingimustel. Õppematerjalide kasutamisel on kasutaja kohustatud viitama õppematerjalide autorile.
Õppematerjalide kasutamine muudel eesmärkidel on lubatud ainult Tartu Ülikooli eelneval kirjalikul nõusolekul.
Courses’i keskkonna kasutustingimused