Institute of Computer Science
  1. Courses
  2. 2025/26 fall
  3. Introduction to Data Science (LTAT.02.002)
ET
Log in

Introduction to Data Science 2025/26 fall

  • Home
  • Lectures
  • Practice sessions
  • Homeworks
  • Projects
  • Projects from 2021
  • Call for Data and Project Topics
  • Exam
  • Tutorials
  • Dictionary ENG-EST
  • Grades
EnglishEstonian
accuracyõigsus
antecedenteesliige
aprioriapriori
association ruleassotsiatsioonireegel
brute force methodjõumeetod
causalpõhjuslik
closed itemsetkinnine elemendihulk
confidenceusaldus
consequenttagaliige
frequencysagedus
frequentsage
frequent itemset miningsagedate elemendihulkade kaeve
infrequentharv
interestingness measurehuvitavuse mõõt
itemsetelemendihulk
latticevõre
lifttõste
maximal frequent itemsetmaksimaalne sage elemendihulk
monotonicitymonotoonsus
non-transactional datamitte-transaktsioonilised andmed
one-hot encodingainukodeering
open itemsetlahtine elemendihulk
patternmuster
precisiontäpsus
relationshipseos
sethulk
subsetalamhulk
supersetülemhulk
support(suhteline) tugi
support countabsoluutne tugi
transactiontransaktsioon
  • Institute of Computer Science
  • Faculty of Science and Technology
  • University of Tartu
In case of technical problems or questions write to:

Contact the course organizers with the organizational and course content questions.
The proprietary copyrights of educational materials belong to the University of Tartu. The use of educational materials is permitted for the purposes and under the conditions provided for in the copyright law for the free use of a work. When using educational materials, the user is obligated to give credit to the author of the educational materials.
The use of educational materials for other purposes is allowed only with the prior written consent of the University of Tartu.
Terms of use for the Courses environment