Institute of Computer Science
  1. Courses
  2. 2018/19 spring
  3. Machine Learning II (LTAT.02.004)
ET
Log in

Machine Learning II 2018/19 spring

Previous years: 2008 » 2012 » 2013 » 2014

  • Main
  • Lectures
  • Exercise sessions
  • Grading
  • Piazza forum
  • Upload

Support Vector Machines

Given by Sven Laur

Brief summary: Recap on algebra and geometry. Maximal margin classifiers. Reformulation as a quadratic programming problem. Primal and dual forms. SVM as an example of a regularized learning problem. Hinge loss as an example of surrogate loss functions.

Slides: (pdf)

Video: UTTV(2016) UTTV (2015) UTTV(2014)

Literature:

  • Cristianini and Shawe-Taylor: An Introduction to Support Vector Machines pages 93 - 112
  • Schölkopf and Smola: Learning with Kernels pages 189 - 215
  • Institute of Computer Science
  • Faculty of Science and Technology
  • University of Tartu
In case of technical problems or questions write to:

Contact the course organizers with the organizational and course content questions.
The proprietary copyrights of educational materials belong to the University of Tartu. The use of educational materials is permitted for the purposes and under the conditions provided for in the copyright law for the free use of a work. When using educational materials, the user is obligated to give credit to the author of the educational materials.
The use of educational materials for other purposes is allowed only with the prior written consent of the University of Tartu.
Terms of use for the Courses environment