Arvutiteaduse instituut
  1. Kursused
  2. 2025/26 sügis
  3. Avaliku võtmega krüptograafia (LTAT.04.017)
EN
Logi sisse

Avaliku võtmega krüptograafia 2025/26 sügis

  • Main Page
  • Lectures
  • Homeworks
  • Sources

Lectures

Lectures are on Mondays from 10:15 to 12:00 in Delta (Narva mnt 18) - room 2034 and through Panopto (or Zoom), and on Mondays from 13:15 to 14:00 through Panopto (or Zoom). Office hours are Tuesday from 09:30 to 11:00 in Delta R3072 (Narva mnt 18).

To join virtually through Panopto/Zoom, the link is given at Moodle. The lecture notes will be shared.

Outline

1. First meeting, course organization, basic primitives, definitions in public key cryptography (encryption, key encapsulation mechanism, identification schemes, digital signature)

2. Discrete logarithm problem (DLP), Diffie-Hellman key exchange, ElGamal public key encryption

3. Integer factorization problem, RSA cryptosystem, primality testing

4. Modular exponentiation algorithms, RSA and Chinese Remainder Theorem

5. Algorithms for integer factorization problem

6. Algorithms for DLP

7. Elliptic curve cryptography, Elliptic curve Diffie-Hellman key exchange

8. Elliptic curve digital signature algorithm (ECDSA) over prime fields, algorithms for ECDLP, Edwards curves, Montgomery curves

9. Real-world examples of traditional public key cryptosystems

10. Basic primitives and definitions in post-quantum cryptography, post-quantum families, computationally hard problems

11. Introduction to lattices, LLL algorithm and properties of LLL reduced basis, Regev cryptosystem

12. Lattice-based key encapsulation mechanisms (KEM) and their primitives

13. Lattice-based signature schemes and their primitives

14. Arithmetic operations (polynomial multiplication, matrix-vector product) for lattice-based cryptography

15. Project presentations

16. Project presentations

  • Arvutiteaduse instituut
  • Loodus- ja täppisteaduste valdkond
  • Tartu Ülikool
Tehniliste probleemide või küsimuste korral kirjuta:

Kursuse sisu ja korralduslike küsimustega pöörduge kursuse korraldajate poole.
Õppematerjalide varalised autoriõigused kuuluvad Tartu Ülikoolile. Õppematerjalide kasutamine on lubatud autoriõiguse seaduses ettenähtud teose vaba kasutamise eesmärkidel ja tingimustel. Õppematerjalide kasutamisel on kasutaja kohustatud viitama õppematerjalide autorile.
Õppematerjalide kasutamine muudel eesmärkidel on lubatud ainult Tartu Ülikooli eelneval kirjalikul nõusolekul.
Courses’i keskkonna kasutustingimused