Arvutiteaduse instituut
  1. Kursused
  2. 2024/25 kevad
  3. Tehisnärvivõrgud (LTAT.02.001)
EN
Logi sisse

Tehisnärvivõrgud 2024/25 kevad

  • Main
  • Timetable
  • Practices
  • Projects
  • Tests
  • Grades
  • Resources

Timetable

Lecture Practice Bonus homework
11.02.2025Lecture 1: Introduction.
(Lecture 1 slides)
(Lecture 1 recording)
12.02.2025 13.02.2025No practice sessions this week. We encourage you to start setting up your environment. Take a look at these sources and download Anaconda:
Install Anaconda
Python Numpy Tutorial
IPython Tutorial
-
18.02.2025Lecture 2: Probability and information theory.
(Lecture 2 slides)
(Lecture 2 recording)
(Book chapter)
19.02.2025 20.02.2025Practice 1: K-nearest neighbor classifier.
(Background material)

(Practice session recording)
(Practice session slides)
(Practice session Exercise)

Homework 1

HW1 deadline : 25.02.2025 at 23:59.
-
25.02.2025Lecture 3: Basics of Machine Learning.
(Lecture 3 slides)
(Lecture 3 recording)
(Book chapter)
26.02.2025 27.02.2025Practice 2: Implementing a softmax classifier.
(Background material)

(Practice 2 recording : Wednesday)
(Practice 2 recording: Thursday)
Practice session slides

Homework 2

HW2 deadline : 04.03.2025 at 23:59.
-
04.03.2025Lecture 4: Feed-forward networks.
(Lecture 4 slides)
(Lecture 4 recording)
(Book chapter)
05.03.2025 06.03.2025Practice 3 (part 1): Two-layer neural network.
(Background material 1)
(Background material 2)
(Practice 3 (part 1) recording)
Homework 3

(Practice session slides)

HW3 deadline: 18.03.2025 at 23:59.
accuracy above 52% (max 5pts).
11.03.2025Lecture 5: Back-propagation.
(Lecture 5 slides)
(Lecture 5 recording)
(Book chapter)
12.03.2025 13.03.2025Practice 3 (part 2): Two-layer neural network.
(Background material 1)
(Background material 2)
(Practice 3 (part 2) recording)
Practice session Exercise
Quizz
Homework 3

HW3 deadline: 18.03.2025 at 23:59.
accuracy above 52% (max 5pts).
18.03.2025Lecture 6: Optimization and regularization.
(Lecture 6 slides)
(Lecture 6 recording)
(Optimization book chapter)
(Regularization book chapter)
19.03.2025 20.03.2025Practice 4 (part 1): Fully-connected neural network.
(Background material 1)
(Background material 2)
(Background material 3)
(Practice 4 (part 1) recording)
(Homework 4)
HW4 deadline: 31.03.2025 at 23:59.
Separate notebook about dropout.
25.03.2025Lecture 7: Convolutional neural networks.
(Lecture 7 slides)
(Lecture 7 recording)
(Book chapter)
(Lecture task)
26.03.2025 27.03.2025Practice 4 (part 2): Fully-connected neural network.
(Background material 1)
(Background material 2)
(Background material 3)
(Practice 4 (part 2) recording)
(Homework 4)
HW4 deadline: 31.03.2025 at 23:59.
Separate notebook about dropout.
01.04.2025Test 1! Computer room 2017
02.04.2025 03.04.2025Practice 5 (part 1): Convolutional networks.
(Background material)
(Practice 5 (part 1) recording)
(Homework 5)
HW5 deadline: 15.04.2025 at 23:59.
Separate notebook about batch normalization.
08.04.2025Lecture 8: Sequential modeling: recurrent neural networks.
(Lecture 8 slides)
(Lecture 8 recording)
(Book chapter)
09.04.2025 10.04.2025Practice 5 (part 2): Convolutional networks.
(Background material)
(Practice 5 (part 2) recording)
(Homework 5)
HW5 deadline: 15.04.2025 at 23:59.
Separate notebook about batch normalization.
15.04.2025Lecture 9: Autoencoders and GANs.
(Lecture 9 slides)
(Lecture 9 recording)
(Autoencoders book chapter)
(GANs book chapter)
NB!: Test 1 Resit will be offered after the lecture (16:00).
16.04.2025 17.04.2025Practice 6: Image classification using PyTorch.
(Homework 6)
(Practice 6 recording)
HW6 deadline: 22.04.2025 at 23:59.
-
22.04.2025Lecture 10: Deep reinforcement learning.

(Lecture 10 code)
(Lecture 10 recording)
23.04.2025 24.04.2025Practice 7: Text classification using Pytorch.
(Homework 7)
(Practice 7 recording)
HW7 deadline: 29.04.2025 at 23:59.
-
29.04.2025Test 2! Computer room 2017
30.04.2025 01.05.2025Practice 8: HW7 discussion and announcements.
(Practice 8 recording)
-
06.05.2025Lecture 11: Software and Practical Methodology.
(Lecture 11 recording)
(Book chapter)
07.05.2025 08.05.2025Practice 9: Wednesday - Project pitch (Track 3); Thursday - Challenges (Tracks 1 and 2).
(Practice recording)
-
13.05.2025Lecture 12: Attention and transformers.
(Lecture 12 slides)
(Lecture 12 recording)
14.05.2025 15.05.2025Practice 10: Wednesday - Project Q&A (Track 3); Thursday - Challenges (Tracks 1 and 2).
-
20.05.2025Lecture 13: Deep learning & the brain (by invited guest Jaan Aru).

(Lecture 13 recording)
21.05.2025 22.05.2025Practice 10: Wednesday - Project Q&A (Track 3); Thursday - Challenges (Tracks 1 and 2).
-
27.05.2025Lecture 14: Applications (by an industry representative).
(Lecture 14 slides)
(Lecture 14 webcast)
(Book chapter)
27.05.2025 28.05.2025Practice 11:
Wednesday - Project MVP Presentation (Track 3);
Thursday - Challenges (Tracks 1 and 2).
-
03.06.2025Test Resit will be offered at lecture time (14:15 in room 2017).
04.06.2025 05.06.2025Practice 12: Wednesday - Project Q&A (Track 3); Thursday - Challenges (Tracks 1 and 2).
-
10.06.2025-
12.06.2025Practice 12:
online - Project Final Presentation (Track 3);
room 1022 - Challenges (Tracks 1 and 2).
-

NB!: there will be no practice sessions in the first week, as shown in the table. They will start on week 2.

  • Arvutiteaduse instituut
  • Loodus- ja täppisteaduste valdkond
  • Tartu Ülikool
Tehniliste probleemide või küsimuste korral kirjuta:

Kursuse sisu ja korralduslike küsimustega pöörduge kursuse korraldajate poole.
Õppematerjalide varalised autoriõigused kuuluvad Tartu Ülikoolile. Õppematerjalide kasutamine on lubatud autoriõiguse seaduses ettenähtud teose vaba kasutamise eesmärkidel ja tingimustel. Õppematerjalide kasutamisel on kasutaja kohustatud viitama õppematerjalide autorile.
Õppematerjalide kasutamine muudel eesmärkidel on lubatud ainult Tartu Ülikooli eelneval kirjalikul nõusolekul.
Courses’i keskkonna kasutustingimused