Arvutiteaduse instituut
  1. Kursused
  2. 2024/25 kevad
  3. Tehisliku ja loomuliku mõistuse seminar (MTAT.03.292)
EN
Logi sisse

Tehisliku ja loomuliku mõistuse seminar 2024/25 kevad

  • Pealeht
  • Loengud
  • Viited

Natural and Artificial Intelligence Seminar

ÕIS MTAT.03.292, 3 ECTS

2025 Spring Semester

  • Topic: Optimizing Cognitive Performance: Cognitive Data Structures and Algorithms
  • Target audience: Master and Doctoral students, especially from the Faculty of Science and Technology and the Faculty of Social Sciences
  • Seminars: Contact lessons on Mondays (12:15-13:45)
  • Location: Delta center-2040 in Tartu
  • Seminar led by: Taavi Kivisik (taavi.kivisik@ut.ee) from NAIL

Content

Main questions include:

  • What are the common limits of cognition? Limits of memory, attention, problem solving.
  • Where can we witness these limits, in which tasks? How can they be measured?
  • Can these limits be overcome? How?

Subtopics include:

  • Cognition: human attention, memory and thinking, psychometrics
  • Cognitive training: attention training, memory training, mnemonics
  • Cognitive data structures and algorithms: mental representations, design of mental representations, learning strategies, memory strategies
  • Expertise
  • User Experience (UX)

Learning Environment

  • Seminars take place only in person (no online participation).
  • We use the flipped classroom method. Our seminars are discussion- and group-work-based, and students complete readings and assignments (e.g. different psychometric tests) before each class. Each person keeps a study journal which needs to be submitted at the end of the course.
  • Workload is planned to be evenly distributed across the semester (no piling up).

To Pass

  1. BEFORE each seminar - read research article(s) and complete assignments
  2. DURING each seminar - participate actively (max 2 seminars can be missed)
  3. AFTER each seminar - make a study journal entry
  4. by end of course - submit a complete study journal documenting your learning journey.
  • Arvutiteaduse instituut
  • Loodus- ja täppisteaduste valdkond
  • Tartu Ülikool
Tehniliste probleemide või küsimuste korral kirjuta:

Kursuse sisu ja korralduslike küsimustega pöörduge kursuse korraldajate poole.
Õppematerjalide varalised autoriõigused kuuluvad Tartu Ülikoolile. Õppematerjalide kasutamine on lubatud autoriõiguse seaduses ettenähtud teose vaba kasutamise eesmärkidel ja tingimustel. Õppematerjalide kasutamisel on kasutaja kohustatud viitama õppematerjalide autorile.
Õppematerjalide kasutamine muudel eesmärkidel on lubatud ainult Tartu Ülikooli eelneval kirjalikul nõusolekul.
Courses’i keskkonna kasutustingimused