Arvutiteaduse instituut
  1. Kursused
  2. 2021/22 kevad
  3. Pervasiivse andmeteaduse seminar (LTAT.06.010)
EN
Logi sisse

Pervasiivse andmeteaduse seminar 2021/22 kevad

  • General
  • Lectures
  • Projects
  • Material and Examples
  • Message board

Readings:

  • Pervasive data science
  • Pervasive data science on the edge

Lectures

Lectures are in person (every Monday) - Lectures will be also available online (Zoom link) (Passcode: pds2021)

Lectures will take place following the (tentative) schedule below.

  • 07.02 Introduction to Pervasive Data Science (Slides)
  • 14.02 Lecture "How to conduct a feasibility study?" (Slides)
  • 21.02 Initial Project Understanding (Slides)
  • 28.02 Lecture "Analysis of collected data in testbed" (Slides)
  • 07.03 Lecture "Check-pointing I (Formal presentation) and PhD student presentation" (Slides) (Slides_PhDprojects-part1)
  • 14.03 - Lecture "Check-pointing II (Informal discussion) and PhD student presentation" (Slides) (Slides_PhDprojects-part2)
  • 21.03 - Lecture "Check-pointing III (Formal presentation) and PhD student presentation" (Slides)
  • 28.03 - Lecture "Check-pointing IV (Informal discussion) and PhD student presentation" (Slides) (Slides_PhDprojects-part3)
  • 04.04 - Lecture "Check-pointing V (Formal presentation) and PhD student presentation" (Slides) (Slides_PhDprojects-part4) Δ
  • 11.04 - Lecture "Check-pointing VI (Informal discussion)" (Slides)
  • 18.04 - Free session (please focus on advancing your contributions)
  • 25.04 - Lecture "Check-pointing VII (Informal discussion)" (Slides)
  • 02.05 - Free session (please prepare the initial draft of deliverables)
  • 09.05 - Submission of initial deliverables - Revision through an informal discussion
  • 16.05 - Tuning deliverable session 1 (for whose deliverables that are poor quality)
  • 23.05 - Tuning deliverable session 2 (for whose deliverables that are poor quality)
  • 30.05 Final deliverable submission to huber DOT flores AT ut DOT ee. No deliverables can be re-submitted after this deadline. Final grades are also uploaded to the system.
  • Arvutiteaduse instituut
  • Loodus- ja täppisteaduste valdkond
  • Tartu Ülikool
Tehniliste probleemide või küsimuste korral kirjuta:

Kursuse sisu ja korralduslike küsimustega pöörduge kursuse korraldajate poole.
Õppematerjalide varalised autoriõigused kuuluvad Tartu Ülikoolile. Õppematerjalide kasutamine on lubatud autoriõiguse seaduses ettenähtud teose vaba kasutamise eesmärkidel ja tingimustel. Õppematerjalide kasutamisel on kasutaja kohustatud viitama õppematerjalide autorile.
Õppematerjalide kasutamine muudel eesmärkidel on lubatud ainult Tartu Ülikooli eelneval kirjalikul nõusolekul.
Courses’i keskkonna kasutustingimused