Arvutiteaduse instituut
  1. Kursused
  2. 2020/21 kevad
  3. Erikursus masinõppes: närvivõrkude treenimise dünaamika (MTAT.03.317)
EN
Logi sisse

Erikursus masinõppes: närvivõrkude treenimise dünaamika 2020/21 kevad

  • Main
  • Schedule
  • Submission
  • Links

Most importantly, the link to the online course that we follow:
https://www.cs.toronto.edu/~rgrosse/courses/csc2541_2021/

Linear Algebra

  • Linear Algebra and Calculus refresher from Stanford Machine Learning course
  • Linear Algebra Review and Reference from Stanford
  • Computational Linear Algebra for Coders from fast.ai.

Calculus

  • Vector, Matrix, and Tensor Derivatives from Stanford.
  • The Matrix Calculus You Need For Deep Learning from fast.ai.

Probability

  • Probabilities and Statistics refresher from Stanford Machine Learning course
  • Review of Probability Theory from Stanford.

Links for Lecture 1: A Toy Model: Linear Regression

  • Tom Goldstein's talk, "An empirical look at generalization in neural nets"
  • Eigenvectors and eigenvalues |Essence of linear algebra

Links for Practice 1: JAX Tutorial

  • Google introductory video covering grad, jit, vmap, and pmap
  • SciPy 2020 talk
  • JAX Docs
  • JAX Github notebooks
  • CSC413 course about neural networks
  • Lecture 3 about Autodiff: slides and lecture notes

Tutorials:

  • JAX Tutorial 1
  • https://colab.research.google.com/drive/1dMZVo9JqI573TSpWLZ6_W5pTKPTPsbpj?usp=sharing|JAX Tutorial 2]]
  • JAX NN and Data Loading

Links for Lecture 2: Taylor Approximations

  • AutoDiff slides by Mathieu Blondel
  • What AutoDiff is and what is not
  • Reverse and forward modes explained (1)
  • Reverse and forward modes explained (2)
  • Jax's doc on forward and backward modes
  • VJP with JVPs
  • Hessian as jvp and vjp
  • Gauss-Newton Matrix
  • Conjugate Gradient explained
  • Conjugate Gradient explained short version
  • Positive Definite Matrix

Links for Problem Set 1: Gradient Descent with Momentum

  • Gradient descent with Momentum blog
  • Text on Iterative methods
  • Paper from Sutskever & Hinton on importance of init and momentum in deep learning

Links for Problem Set 2: Computing the Grassmannian Length

  • why deeper networks are more expressive than wide but shallow
  • Grassmannian length video presentation
  • forward vs reverse auto-differentiation 1
  • forward vs reverse auto-differentiation 2
  • forward vs reverse auto-differentiation 3

Links for Problem Set 3: Path Energy and Geodesics

  • The paper that discusses geometrical interpretation of Fisher distance on the example of a Normal distribution
  • Explicit calculation of Fisher matrix for parametrization
  • Leibniz integral rule for differentiation under the integral sign

Links for Lecture 5: Adaptive Gradient Methods, Normalization, Weight Decay

  • Original Batch Norm Paper
  • Bridge between optimizers and Hessian approximation
  • Batch Norm + Adam optimizer
  • NeurIPS Test of Time talk
  • About experiment with random batch transformation
  • About stability

Links for Lecture 6: Infinite Limits and Overparameterization

  • Priors for Infinite Networks
  • Gaussian Process Behaviour in Wide Deep Neural Networks
  • Approximate Inference Turns Deep Networks into Gaussian Processes
  • On Exact Computation with an Infinitely Wide Neural Net

Links for Lecture 7: Stochastic Optimization and Scaling

  • Experiments of batch size impact on training time
  • Theoretical results of training dynamics of SGD
  • Handy visualization for SGD
  • KFAC optimization algorithm
  • Insights on why NQM is not a best toy model for this specific problem
  • MIT lecture on SGD
  • Accelerated Nesterov algorithm
  • Arvutiteaduse instituut
  • Loodus- ja täppisteaduste valdkond
  • Tartu Ülikool
Tehniliste probleemide või küsimuste korral kirjuta:

Kursuse sisu ja korralduslike küsimustega pöörduge kursuse korraldajate poole.
Õppematerjalide varalised autoriõigused kuuluvad Tartu Ülikoolile. Õppematerjalide kasutamine on lubatud autoriõiguse seaduses ettenähtud teose vaba kasutamise eesmärkidel ja tingimustel. Õppematerjalide kasutamisel on kasutaja kohustatud viitama õppematerjalide autorile.
Õppematerjalide kasutamine muudel eesmärkidel on lubatud ainult Tartu Ülikooli eelneval kirjalikul nõusolekul.
Courses’i keskkonna kasutustingimused