Arvutiteaduse instituut
  1. Kursused
  2. 2021/22 sügis
  3. Erikursus masinõppes: Stiimulõpe (MTAT.03.317)
EN
Logi sisse

Erikursus masinõppes: Stiimulõpe 2021/22 sügis

Older Datamining Seminars: 2008k » 2008s » 2009k » 2009s » 2010k » 2011k » 2012s » 2014k » 2014s » 2014k

  • About
  • Timetable
  • Homeworks
  • Project ideas

Special Course in Machine Learning: Geometric Deep Learning

Geometric Deep Learning (GDL) is an effort to exploit the geometric structure of datasets to achieve efficient representation learning. But GDL also proposes a fundamental principle (symmetry) as a framework to understand and classify the current (and future) zoo of diverse neural networks.

In this course, we are going to delve into geometric deep learning theory based on the public online course by Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Velickovic: https://geometricdeeplearning.com/lectures/

Syllabus

     Lecture 1: Introduction
     Lecture 2: High-Dimensional Learning
     Lecture 3: Geometric Priors I
     Lecture 4: Geometric Priors II
     Lecture 5: Graphs & Sets I
     Lecture 6: Graphs & Sets II
     Lecture 7: Grids
     Lecture 8: Groups
     Lecture 9: Geodesics & Manifolds
     Lecture 10: Sequences & Time Warping
     Lecture 11: Conclusions
     Tutorial 1: Graph Neural Networks
     Seminar 1: Geometric Deep Learning and Reinforcement Learning

Prerequisites

This course requires a strong background in math and deep learning.

  • A second course in Algebra
  • Calculus
  • Geometry
  • Deep learning
  • Programming

Organization

The course consists of video lectures and tests/project. Each week we will meet to watch one lecture from https://geometricdeeplearning.com/lectures/ in which we will stop the video frequently to discuss. It will be possible to participate in the discussion/tests fully online via Zoom for those students who cannot attend physically.

The first lecture will take place on Friday, September 10th.

The class is held in Delta room 2049 on Fridays at 12:15-14. For each class one of the teachers/students (or team) will produce test questions for the video lecture of that week. NB! The test must be sent to raulvicente@gmail.com by Friday before the class for review!

The last 4 weeks are reserved for a team project. The idea of a project is to implement some concepts covered during the course.

To pass the course one has to:

  • create one test and score more than 70% in all other tests,
  • participate in a team project.

Materials

  • https://geometricdeeplearning.com/lectures/ - we will mostly follow this course.
  • https://arxiv.org/abs/2104.13478 - arXiv paper with most of the content of the lectures.

Contacts

Raul Vicente, raulvicente@gmail.com, room 3100
Florian Stelzer, fl.stelzer@gmail.com
Kallol Roy, kallol.roy@ut.ee

  • Arvutiteaduse instituut
  • Loodus- ja täppisteaduste valdkond
  • Tartu Ülikool
Tehniliste probleemide või küsimuste korral kirjuta:

Kursuse sisu ja korralduslike küsimustega pöörduge kursuse korraldajate poole.
Õppematerjalide varalised autoriõigused kuuluvad Tartu Ülikoolile. Õppematerjalide kasutamine on lubatud autoriõiguse seaduses ettenähtud teose vaba kasutamise eesmärkidel ja tingimustel. Õppematerjalide kasutamisel on kasutaja kohustatud viitama õppematerjalide autorile.
Õppematerjalide kasutamine muudel eesmärkidel on lubatud ainult Tartu Ülikooli eelneval kirjalikul nõusolekul.
Tartu Ülikooli arvutiteaduse instituudi kursuste läbiviimist toetavad järgmised programmid:
euroopa sotsiaalfondi logo