Arvutiteaduse instituut
  1. Kursused
  2. 2018/19 sügis
  3. Erikursus masinõppes: Stiimulõpe närvivõrkudega (MTAT.03.317)
EN
Logi sisse

Erikursus masinõppes: Stiimulõpe närvivõrkudega 2018/19 sügis

  • Main
  • Timetable
  • Homeworks
  • Links

Links

Linear Algebra

  • Linear Algebra and Calculus refresher from Stanford Machine Learning course
  • Linear Algebra Review and Reference from Stanford
  • Computational Linear Algebra for Coders from fast.ai.

Calculus

  • Derivatives, Backpropagation, and Vectorization from Stanford.
  • Vector, Matrix, and Tensor Derivatives from Stanford.
  • The Matrix Calculus You Need For Deep Learning from fast.ai.

Probability

  • Probabilities and Statistics refresher from Stanford Machine Learning course
  • Review of Probability Theory from Stanford.

Neural Networks

Courses

  • Convolutional Neural Networks for Visual Recognition from Stanford. Thorough and easy to follow course.
  • fast.ai course by Jeremy Howard et al. Geared towards coders, top-down methodology.
  • deeplearning.ai course by Andrew Ng. Some say it's a bit basic, but he explains extremely well.

Books

  • Neural Networks and Deep Learning by Michael Nielsen. More of tutorial style, some very good explanations, i.e. the chapter about universal approximators.
  • Deep Learning with Python by Francois Chollet, author of Keras. Excellent down-to-earth practical introduction, with many advanced examples.
  • Deep Learning by Ian Goodfellow and Yoshua Bengio and Aaron Courville. The definitive reference if you already know a bit.

Reinforcement Learning

Courses

  • UCL Course on RL by David Silver. Very good lectures about basics, but not much deep RL.
  • Deep Reinforcement Learning course by Sergey Levine. Covers a lot of material, especially from control theory perspective. Might be hard to follow.
  • Reinforcement Learning course from Stanford. Easiest to follow, but not as thorough as previous two.

Books

  • Reinforcement Learning: An Introduction by Richard Sutton and Andrew Barto. The definitive introduction and reference.
  • Learning to Act chapter in Artificial Intelligence: Foundations of Computational Agents book by David Poole and Alan Mackworth. Some good examples of tabular Q-learning.
  • Reinforcement learning in Scholarpedia. Good review of challenges in RL.
  • PhD thesis by John Schulman - technically not a book, but provides a good overview of RL by one of the most prominent researchers in the field.
  • Arvutiteaduse instituut
  • Loodus- ja täppisteaduste valdkond
  • Tartu Ülikool
Tehniliste probleemide või küsimuste korral kirjuta:

Kursuse sisu ja korralduslike küsimustega pöörduge kursuse korraldajate poole.
Õppematerjalide varalised autoriõigused kuuluvad Tartu Ülikoolile. Õppematerjalide kasutamine on lubatud autoriõiguse seaduses ettenähtud teose vaba kasutamise eesmärkidel ja tingimustel. Õppematerjalide kasutamisel on kasutaja kohustatud viitama õppematerjalide autorile.
Õppematerjalide kasutamine muudel eesmärkidel on lubatud ainult Tartu Ülikooli eelneval kirjalikul nõusolekul.
Tartu Ülikooli arvutiteaduse instituudi kursuste läbiviimist toetavad järgmised programmid:
euroopa sotsiaalfondi logo