Arvutiteaduse instituut
  1. Kursused
  2. 2018/19 sügis
  3. Hajusandmetöötlus pilves (LTAT.06.005)
EN
Logi sisse

Hajusandmetöötlus pilves 2018/19 sügis

  • HomePage
  • Lectures
  • Practicals
  • Submit Homework
  • Results

Distributed Data Processing on the Cloud

In recent years, there has been a significant growth in the size of data that needs to be processed and analyzed. With the advent of cloud computing and maturity of distributed systems, several new solutions have popped up for distributed data processing such as MapReduce, in memory alternatives such as Apache Spark, NoSQL databases or frameworks based on the Bulk Synchronous Parallel model. This course aims at providing students with an overview of cloud and how large-scale data of the order of few Tera or Peta bytes can be processed with distributed data processing solutions and frameworks, on the cloud resources. The course introduces Cloud computing, MapReduce, BigData solutions such as Pig, Spark, Giraph, NoSQL solutions such as Riak and MongoDB.

On successful completion of this course, students will be able to:

  1. Understand the basic principles of distributed data processing and storage
  2. Apply well-known techniques to process data on the cloud
  3. Use different distributed data processing tools
  4. Adapt prominent data processing algorithms to distributed computing models such as MapReduce and Bulk Synchronous Parallel

The lab work in this course involves significant amount of programming. We will mainly work with Java (first half of the course) and Python (second half) programming languages, but we will also briefly touch SQL, R and JavaScript.

Lectures

  • Friday at 12.15 - 14.00 in J. Liivi 2 - 122 week 1-16

Lecturers are:

  1. Satish Srirama - Ülikooli 17, Room - 324 (satish . srirama ät ut . ee)
  2. Pelle Jakovits - Ülikooli 17, Room - 324 (jakovits ät ut . ee)

Practice sessions

  • Monday at 14.15 - 16.00 in Ülikooli 17 - 115 week 2-16
  • Tuesday at 12.15 - 14.00 in Ülikooli 17 - 115 week 2-16

NB! Practice sessions start from the second week of the semester

Lab assistants are:

  1. Pelle Jakovits - Ülikooli 17, Room - 324 (jakovits ät ut . ee)

Examination 1

  1. Option 1: Friday 04.01.2019 12:00 - 15:00, Ulikooli 17 - 219
  2. Option 2: Monday 07.01.2019 10:00 - 13:00, Ulikooli 17 - 219

Resit examination

  1. Monday 21.01.2019 10:00 - 13:00, Ülikooli 17 - 219

Grading rules

Final grade consists of three components:

  1. Written exam – 50%
  2. Labs – 45%
  3. Active participation in the lectures - 5%

NB! You need to collect at least 50% in each grade component to pass the course!

  • Arvutiteaduse instituut
  • Loodus- ja täppisteaduste valdkond
  • Tartu Ülikool
Tehniliste probleemide või küsimuste korral kirjuta:

Kursuse sisu ja korralduslike küsimustega pöörduge kursuse korraldajate poole.
Õppematerjalide varalised autoriõigused kuuluvad Tartu Ülikoolile. Õppematerjalide kasutamine on lubatud autoriõiguse seaduses ettenähtud teose vaba kasutamise eesmärkidel ja tingimustel. Õppematerjalide kasutamisel on kasutaja kohustatud viitama õppematerjalide autorile.
Õppematerjalide kasutamine muudel eesmärkidel on lubatud ainult Tartu Ülikooli eelneval kirjalikul nõusolekul.
Tartu Ülikooli arvutiteaduse instituudi kursuste läbiviimist toetavad järgmised programmid:
euroopa sotsiaalfondi logo it akadeemia logo