Arvutiteaduse instituut
  1. Kursused
  2. 2025/26 kevad
  3. Sissejuhatus ründe tuvastamisse ja ennetamisse (LTAT.04.022)
EN
Logi sisse

Sissejuhatus ründe tuvastamisse ja ennetamisse 2025/26 kevad

  • Main Page
  • Lectures
  • Homeworks
  • Sources

Introduction to Attack Detection and Prevention

Instructor : Sedat Akleylek

Credits : 6 ECTS

Language : English

Schedule : Tuesday 10:15 - 12:00 in Delta (R1008 or online via Zoom), and Thursday 11:15 - 12:00 (online - Consultation/Practice)

Office Hour : Monday 13:00 - 14:30, Room 3072 (We are flexible on the office hour by appointment)

About the Course

The scope of this course includes:

  • understand the fundamental concepts and terminology of cybersecurity and cryptography.
  • explain different types of cyber attacks and their underlying mechanisms.
  • apply symmetric and asymmetric cryptographic techniques for securing communication.
  • identify and evaluate network- and host-based attacks and propose suitable mitigation strategies.
  • understand and implement intrusion detection and prevention systems (IDS/IPS).
  • apply machine learning and data analysis techniques for detecting anomalies and cyber threats.
  • understand malware and social engineering attack analysis using both static and dynamic approaches.
  • analyse the design and function of network protection systems, SIEM, EDR, and SOAR tools.

This course aims to provide students with a solid foundation in cybersecurity principles, cryptographic techniques, and data-driven methods for detecting attacks. It introduces modern cybersecurity threats, defensive strategies, and the application of data science and machine learning for threat detection and prevention.

We will explain the necessary mathematical background in the course.

Grading

Homeworks 30%

Projects 40%

Final exam 30%

There will be one set of "practical (implementation)" homework assignments. In the project assignments, the student should write a research report or implement one of the given algorithms.

Reading/Resources

Textbooks, research papers, and lecture notes will be assigned throughout the semester.

  • Arvutiteaduse instituut
  • Loodus- ja täppisteaduste valdkond
  • Tartu Ülikool
Tehniliste probleemide või küsimuste korral kirjuta:

Kursuse sisu ja korralduslike küsimustega pöörduge kursuse korraldajate poole.
Õppematerjalide varalised autoriõigused kuuluvad Tartu Ülikoolile. Õppematerjalide kasutamine on lubatud autoriõiguse seaduses ettenähtud teose vaba kasutamise eesmärkidel ja tingimustel. Õppematerjalide kasutamisel on kasutaja kohustatud viitama õppematerjalide autorile.
Õppematerjalide kasutamine muudel eesmärkidel on lubatud ainult Tartu Ülikooli eelneval kirjalikul nõusolekul.
Courses’i keskkonna kasutustingimused