Arvutiteaduse instituut
Courses.cs.ut.ee Arvutiteaduse instituut Tartu Ülikool
  1. Kursused
  2. 2025/26 kevad
  3. Projektipõhine sissejuhatus masinõppesse (veebis) (LTAT.02.040)
EN
Logi sisse

Projektipõhine sissejuhatus masinõppesse (veebis) 2025/26 kevad

  • Pealeht
  • Loengud
  • Kodutööd
  • Kaggle võistlus
  • Projekti ja plakati konkurss

Lectures

Week # 01 - 09 Feb - Introduction to Machine Learning

Lecture 1- Part 1
Lecture 1- Part 2
Lecture 1- Part 3
Lecture 1- Part 4
Lecture 1- Part 5
Lecture 1- Part 6
Lecture 1- Part 7
Lecture 1- Part 8
Lecture 1- Part 9

Week # 02 - 16 Feb - Data Preprocessing + Homework 1: Python Basics

Lecture 2- Part 1
Lecture 2- Part 2
Lecture 2- Part 3
Lecture 2- Part 4

Week # 03 - 23 Feb - Feature Selection and Engineering + Homework 2: Data Preprocessing

Lecture 3- Part 1
Lecture 3- Part 2

Week # 04 - 02 Mar - Classification

Classification Lecture 4- Part 1
Classification Lecture 4- Part 2
Classification Lecture 4- Part 3
No Code Classification Lecture 4- Part 4
No Code Classification Lecture 4- Part 5
No Code Classification Lecture 4- Part 6
Low Code Classification Lecture 4- Part 7
Low Code Classification Lecture 4- Part 8
Low Code Classification Lecture 4- Part 9
Low Code Classification Lecture 4- Part 10

Week # 05 - 09 Mar - Regression + Homework 3: Classification

Regression Lecture 5- Part 1
No Code Regression Lecture 5- Part 2
No Code Regression Lecture 5- Part 3
No Code Regression Lecture 5- Part 4
Low Code Regression Lecture 5- Part 5
Low Code Regression Lecture 5- Part 6
Low Code Regression Lecture 5- Part 7
Low Code Regression Lecture 5- Part 8
Low Code Regression Lecture 5- Part 9
Advanced Concepts in Linear Regression Lecture 5- Part 10

Week # 06 - 16 Mar - Time Series Forecasting + Homework 4: Regression

Lecture 6- Part 1
Lecture 6- Part 2
Lecture 6- Part 3
Lecture 6- Part 4

Week # 07 - 23 Mar - Clustering + Homework 5: Time Series Forecosting

Lecture 7- Part 1
Lecture 7- Part 2
Lecture 7- Part 3
Lecture 7- Part 4
Lecture 7- Part 5
Lecture 7- Part 6

Week # 08 - 30 Mar - AutoML & Computer vision + Homework 6: Clustering

AutoML Lecture 8- Part 1
Computer vision Lecture 8- Part 1
Computer vision Lecture 8- Part 2
Computer vision Lecture 8- Part 3
Computer vision Lecture 8- Part 4
Computer vision Lecture 8- Part 5
Computer vision Lecture 8- Part 6
Computer vision Lecture 8- Part 7
Computer vision Lecture 8- Part 8

Week # 09 - 06 Apr - Model Explainability & Large Language Model + Homework 7: AutoML + START PREPARING FOR PROJECT PROPOSAL

Lecture 9 - Part 1
Lecture 9- Part 2
Lecture 9- Part 3
Lecture 9- Part 4
Lecture 9- Part 5
Lecture 9- Part 6
Lecture 9- Part 7
Lecture 9- Part 8
Lecture 9 - Part 9

Week # 10 - 13 Apr - Neural Network + Homework 8: Computer Vision

Lecture 10- Part 1
Lecture 10- Part 2
Lecture 10- Part 3
Lecture 10- Part 4
Lecture 10- Part 5
Lecture 10- Part 6
Lecture 10- Part 7
Lecture 10- Part 8

Week # 11 - 20 Apr - Interpretability SUBMIT PROJECT PROPOSAL

Lecture 11 - Part 1
Lecture 11 - Part 2
Lecture 11 - Part 3
Lecture 11 - Part 4

Week # 12 - 27 Apr - Specialized Topics

Tutorial on Random Forest
Tutorial in LightGBM including hyperparameter tuning
Introduction to XGBoost Algorithm
Simple and multivariate linear regression
No Code
Low code I – Model creation
Low code II – Model evaluation
Random Forest
LightGBM

Week # 13 - 04 May - Kaggle Competition

will be informed soon.

Week # 14 - 11 May - PROJECT SUBMISSION

Week 15 - 18 May - START PREPARING FOR POSTER

Week 16 - 25 May - POSTER SUBMISSION

Week 17 - 1 jun - POSTER PRESENTATION

  • Arvutiteaduse instituut
  • Loodus- ja täppisteaduste valdkond
  • Tartu Ülikool
Tehniliste probleemide või küsimuste korral kirjuta:

Kursuse sisu ja korralduslike küsimustega pöörduge kursuse korraldajate poole.
Õppematerjalide varalised autoriõigused kuuluvad Tartu Ülikoolile. Õppematerjalide kasutamine on lubatud autoriõiguse seaduses ettenähtud teose vaba kasutamise eesmärkidel ja tingimustel. Õppematerjalide kasutamisel on kasutaja kohustatud viitama õppematerjalide autorile.
Õppematerjalide kasutamine muudel eesmärkidel on lubatud ainult Tartu Ülikooli eelneval kirjalikul nõusolekul.
Courses’i keskkonna kasutustingimused