Institute of Computer Science
  1. Courses
  2. 2024/25 spring
  3. Special Course in Machine Learning: Deep Learning for Genomics (MTAT.03.317)
ET
Log in

Special Course in Machine Learning: Deep Learning for Genomics 2024/25 spring

  • Main
  • Schedule
  • Homeworks
  • Links

Deep Learning for Genomics

Welcome to the Special Course in Machine Learning in Spring 2025! This course is designed to provide practical insights into the potential and limitations of deep learning in genomics. This is done by reading, presenting and discussing impactful papers of the domain. On top of that, we will also provide some practical tasks.

This course will focus on:

  • Understanding Deep Learning: The basics of how deep learning works and understanding different neural network architectures.
  • Popular Genomic Assays: Understanding the fundamentals of RNA-seq, ChIP-seq, and DNase-seq, and how these datasets can be integrated with deep learning.
  • Genomic Applications: Using deep learning for gene expression analysis, splicing predictions, and modelling chromatin activity.
  • Limitations: Addressing the challenges and boundaries of deep learning in genomics.
  • Interpretability: Techniques for understanding and explaining model predictions in a biological context.

Structure

There will be two types of seminars: paper seminars, which will take the form of discussions centered around pre-selected papers, and coding seminars, which will demonstrate the discussed models in action.

Prerequisites

We expect you to be comfortable with:

  • Python
  • Basics of machine learning

We do not expect the students to have a strong background in genetics/genomics.

Organization

Seminars are scheduled on Tuesday 16.15 - 18.00 in 3087 (most current info is on Slack), Delta (Narva mnt 18).

Zoom: link

We use Slack for communications: link.

NB!: the first seminar will take place on February 11th, 2025!

Grading

To pass the course, students need to

  1. Attend > 50% (6) seminars + submit the paper questions before the seminars
  2. Submit 3 homeworks

Contacts

  • Dzvinka Yarish (dzvenymyra-marta.yarish@ut.ee)
  • Kaur Alasoo (kaur.alasoo@ut.ee)
  • Institute of Computer Science
  • Faculty of Science and Technology
  • University of Tartu
In case of technical problems or questions write to:

Contact the course organizers with the organizational and course content questions.
The proprietary copyrights of educational materials belong to the University of Tartu. The use of educational materials is permitted for the purposes and under the conditions provided for in the copyright law for the free use of a work. When using educational materials, the user is obligated to give credit to the author of the educational materials.
The use of educational materials for other purposes is allowed only with the prior written consent of the University of Tartu.
Terms of use for the Courses environment