Normalizing Flow Models
Part 2

Dmytro Urukov
24 Mar 2020
Recap: Normalizing Flows

Take a random variable \mathbf{z} with distribution $q(\mathbf{z})$, apply some invertible mapping: $\mathbf{z}' = f(\mathbf{z})$
Recap: Change of variables rule

\[p_X(x) = p_Z(z) \left| \frac{\partial z}{\partial x} \right| \]

\[p_X(x) = p_Z(z) \left| \det \left(\frac{\partial f(z)}{\partial z} \right) \right|^{-1} \]

\[\max_{\theta} \log p_X(D; \theta) = \sum_{x \in D} \log p_Z (f^{-1}_\theta(x)) + \log \left| \det \left(\frac{\partial f^{-1}_\theta(x)}{\partial x} \right) \right| \]
Recap: triangular matrix

\[x_1 = T_1(z_1) \]
\[x_2 = T_2(z_1, z_2) \]
\[x_3 = T_3(z_1, z_2, z_3) \]
\[\vdots \]
\[x_d = T_d(z_1, z_2, z_3, \ldots, z_d) \]

\[T : \mathbb{R}^d \rightarrow \mathbb{R}^d \]

\[\nabla_z T = \begin{bmatrix} \frac{\partial T_1}{\partial z_1} & 0 & \ldots & 0 \\
\frac{\partial T_2}{\partial z_1} & \frac{\partial T_2}{\partial z_2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial T_d}{\partial z_1} & \frac{\partial T_d}{\partial z_2} & \ldots & \frac{\partial T_d}{\partial z_d} \end{bmatrix} \]
Invertible transformations
NICE: Non-Linear Independent Components Estimation

\[x_{1:d} = z_{1:d} \]

\[x_{d+1:D} = g(z_{d+1:D}; m(z_{1:d})) \]
NICE: Additive coupling layers

\[
x_{1:d} = z_{1:d}
\]

\[
x_{d+1:D} = z_{d+1:D} + m(z_{1:d})
\]
NICE: Additive coupling layers

- **Forward mapping** $\mathbf{z} \mapsto \mathbf{x}$:
 - $\mathbf{x}_{1:d} = \mathbf{z}_{1:d}$ (identity transformation)
 - $\mathbf{x}_{d+1:n} = \mathbf{z}_{d+1:n} + m_\theta(\mathbf{z}_{1:d})$ ($m_\theta(\cdot)$ is a neural network with parameters θ, d input units, and $n-d$ output units)

- **Inverse mapping** $\mathbf{x} \mapsto \mathbf{z}$:
 - $\mathbf{z}_{1:d} = \mathbf{x}_{1:d}$ (identity transformation)
 - $\mathbf{z}_{d+1:n} = \mathbf{x}_{d+1:n} - m_\theta(\mathbf{x}_{1:d})$

- **Jacobian of forward mapping**:

 $$
 J = \frac{\partial \mathbf{x}}{\partial \mathbf{z}} = \begin{pmatrix}
 I_d & 0 \\
 \frac{\partial \mathbf{x}_{d+1:n}}{\partial \mathbf{z}_{1:d}} & I_{n-d}
 \end{pmatrix}
 $$

 $$
 \det(J) = 1
 $$

 Volume preserving transformation
NICE: Scaling layers
NICE: Scaling layers

\[
\begin{bmatrix}
S_{1,1} & 0 & \cdots & \cdots & 0 \\
0 & S_{2,2} & 0 & \cdots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
0 & 0 & \cdots & \cdots & S_{D,D}
\end{bmatrix}
\begin{bmatrix}
z_1 \\
z_2 \\
\vdots \\
z_D
\end{bmatrix}
\]

Scaling matrix S
NICE: Scaling layers

- Forward mapping $z \mapsto x$:
 \[x_i = s_i z_i \]
 where $s_i > 0$ is the scaling factor for the i-th dimension.

- Inverse mapping $x \mapsto z$:
 \[z_i = \frac{x_i}{s_i} \]

- Jacobian of forward mapping:
 \[J = \text{diag}(s) \]
 \[\det(J) = \prod_{i=1}^{n} s_i \]
NICE: Generated samples

(a) Model trained on MNIST
(b) Model trained on TFD
Real-NVP: Non-volume preserving extension of NICE

- **Forward mapping** $\mathbf{z} \mapsto \mathbf{x}$:
 - $\mathbf{x}_{1:d} = \mathbf{z}_{1:d}$ (identity transformation)
 - $\mathbf{x}_{d+1:n} = \mathbf{z}_{d+1:n} \odot \exp(\alpha_\theta(\mathbf{z}_{1:d})) + \mu_\theta(\mathbf{z}_{1:d})$
 - $\mu_\theta(\cdot)$ and $\alpha_\theta(\cdot)$ are both neural networks with parameters θ, d input units, and $n - d$ output units [\odot: elementwise product]

- **Inverse mapping** $\mathbf{x} \mapsto \mathbf{z}$:
 - $\mathbf{z}_{1:d} = \mathbf{x}_{1:d}$ (identity transformation)
 - $\mathbf{z}_{d+1:n} = (\mathbf{x}_{d+1:n} - \mu_\theta(\mathbf{x}_{1:d})) \odot (\exp(-\alpha_\theta(\mathbf{x}_{1:d})))$

- **Jacobian of forward mapping**:
 \[
 J = \frac{\partial \mathbf{x}}{\partial \mathbf{z}} = \begin{pmatrix}
 I_d & 0 \\
 \frac{\partial \mathbf{x}_{d+1:n}}{\partial \mathbf{z}_{1:d}} & \text{diag}(\exp(\alpha_\theta(\mathbf{z}_{1:d})))
 \end{pmatrix}
 \]

 \[
 \det(J) = \prod_{i=d+1}^{n} \exp(\alpha_\theta(\mathbf{z}_{1:d})_i) = \exp\left(\sum_{i=d+1}^{n} \alpha_\theta(\mathbf{z}_{1:d})_i\right)
 \]

- **Non-volume preserving transformation** in general since determinant can be less than or greater than 1

Density estimation using Real NVP (Dinh et al., 2017)
Real-NVP: Examples
Autoregressive models as flow models

\[q(x) = q_1(x_1) \cdot q_2(x_2 | x_1) \cdot \ldots \cdot q_d(x_d | x_{<d}) \]

choosing a conditional implicitly fixes a family of triangular maps

\[x_j = T_j(z_j; \theta_j(z_{<j})) \]
Masked Autoregressive Flow (MAF)

- **Forward mapping from** \(z \mapsto x \):
 - Let \(x_1 = \exp(\alpha_1)z_1 + \mu_1 \). Compute \(\mu_2(x_1), \alpha_2(x_1) \)
 - Let \(x_2 = \exp(\alpha_2)z_2 + \mu_2 \). Compute \(\mu_3(x_1, x_2), \alpha_3(x_1, x_2) \)

- **Sampling is sequential and slow (like autoregressive):** \(O(n) \) time

Masked Autoregressive Flow for Density Estimation (Papamakarios et al., 2017)
Masked Autoregressive Flow (MAF)

- Inverse mapping from $\mathbf{x} \mapsto \mathbf{z}$:
 - Compute all μ_i, α_i (can be done in parallel using e.g., MADE)
 - Let $z_1 = (x_1 - \mu_1) / \exp(\alpha_1)$ (scale and shift)
 - Let $z_2 = (x_2 - \mu_2) / \exp(\alpha_2)$
 - Let $z_3 = (x_3 - \mu_3) / \exp(\alpha_3)$...

- Jacobian is lower diagonal, hence determinant can be computed efficiently
- Likelihood evaluation is easy and parallelizable (like MADE)
Inverse Autoregressive Flow (IAF)

- Forward mapping from $z \mapsto x$ (parallel):
 - Sample $z_i \sim \mathcal{N}(0,1)$ for $i = 1, \ldots, n$
 - Compute all μ_i, α_i (can be done in parallel)
 - Let $x_1 = \exp(\alpha_1)z_1 + \mu_1$
 - Let $x_2 = \exp(\alpha_2)z_2 + \mu_2$...
- Inverse mapping from $x \mapsto z$ (sequential):
 - Let $z_1 = (x_1 - \mu_1)/\exp(\alpha_1)$. Compute $\mu_2(z_1), \alpha_2(z_1)$
 - Let $z_2 = (x_2 - \mu_2)/\exp(\alpha_2)$. Compute $\mu_3(z_1, z_2), \alpha_3(z_1, z_2)$
 - Fast to sample from, slow to evaluate likelihoods of data points (train)
 - Note: Fast to evaluate likelihoods of a generated point (cache z_1, z_2, \ldots, z_n)

Improving Variational Inference with Inverse Autoregressive Flow (Kingma et al., 2017)
IAF is inverse of MAF
Parallel WaveNet

WaveNet Teacher

Linguistic features

Teacher Output

$P(x_i | x_{<i})$

Generated Samples

$x_i = g(z_i | z_{<i})$

WaveNet Student

Linguistic features

Student Output

$P(x_i | z_{<i})$

Input noise

z_i
Parallel WaveNet

- **Training**
 - Step 1: Train teacher model (MAF) via MLE
 - Step 2: Train student model (IAF) to minimize KL divergence with teacher

- **Test-time**: Use student model for testing

- **Improves sampling efficiency over original Wavenet (vanilla autoregressive model) by 1000x!**
References

- Normalizing Flow Models
- Primer on Normalizing Flows
- What are normalizing flows?
- Flow-based Deep Generative Models
Thank you!