A Computer Warm in 2000

• An email message
 – subject line "ILOVEYOU" and
 – attachment "LOVE-LETTER-FOR-YOU.txt.vbs"

• Opening the attachment
 – activates the Visual Basic script
 • Overwriting image files,
 • Sent a copy of itself to the first 50 addresses in the Windows Address Book used by Microsoft Outlook

• Success
 – Scripting engine is enabled
 – Advantage of Microsoft algorithm to hiding file extensions
 – Social engineering
 – Microsoft design weakness
 • Access to operating systems
 • Secondary storage

• Impact
 – Within 10 days
 • 50 million (10% of the Internet connected computers) infections reported
 • Pentagon, CIA, British Parliament made a complete shut down of their mail systems
 – $5.5-8.7 billion damage
 – $15 billion to remove the worm

http://en.wikipedia.org/wiki/ILOVEYOU

Another example
On successful completion of this course

- Identify causes and consequences of (lack of) system and software security

- Master essential techniques to reduce and avoid system and software security problems, to introduce and reason on security requirements and controls

- Apply advanced modelling techniques (notations, tools, and processes) to build secure systems and software
About the Course

- **Course Website**

- **Lectures**
 - Presented during lectures - uploaded to before the lecture
 - Lecture videos – uploaded after the lecture

- **Practicals**
 - Exercises and Workshops done during the practical sessions
 - Home assignments

- **Readings**
 - Self-study material
 - Articles and other readings

- **Upload**
 - Place where you will be able to upload solutions to all home assignments

- **Grading**
 - Grading modalities explained

- **Exam**
 - Previous year exams – tasks and some solutions
 - This year exam (tasks will be uploaded after the exam)

Message Board

Feel free to post and discuss the course related questions, or provide feedback.
Course outline / Schedule

<table>
<thead>
<tr>
<th></th>
<th>Security Risk Management</th>
<th>R. Matulevičius</th>
<th>9 February</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Security Modelling</td>
<td>R. Matulevičius</td>
<td>16 February</td>
</tr>
<tr>
<td>3</td>
<td>Security Modelling</td>
<td>R. Matulevičius</td>
<td>23 February</td>
</tr>
<tr>
<td>4</td>
<td>Security Modelling</td>
<td>R. Matulevičius</td>
<td>2 March</td>
</tr>
<tr>
<td>5</td>
<td>Security Threats, Errors and their types</td>
<td>R. Matulevičius</td>
<td>9 March</td>
</tr>
<tr>
<td>6</td>
<td>Security Requirements</td>
<td>R. Matulevičius</td>
<td>16 March</td>
</tr>
<tr>
<td>7</td>
<td>RBAC: Role-based Access Control</td>
<td>R. Matulevičius</td>
<td>23 March</td>
</tr>
<tr>
<td>8</td>
<td>Model-driven Security: RBAC workshop</td>
<td>R. Matulevičius</td>
<td>30 March</td>
</tr>
<tr>
<td>9</td>
<td>Introduction to Cryptography</td>
<td>D. Unruh</td>
<td>6 April</td>
</tr>
<tr>
<td>10</td>
<td>Estonian X-Road</td>
<td>M. Freudenthal</td>
<td>13 April</td>
</tr>
<tr>
<td>11</td>
<td>Internet Voting</td>
<td>S. Heiberg</td>
<td>20 April</td>
</tr>
<tr>
<td>12</td>
<td>Dependability Requirements</td>
<td>R. Matulevičius</td>
<td>27 April</td>
</tr>
<tr>
<td>13</td>
<td>Social Engineering</td>
<td>R. Matulevičius</td>
<td>4 May</td>
</tr>
<tr>
<td>14</td>
<td>Security Patterns</td>
<td>R. Matulevičius</td>
<td>11 May</td>
</tr>
<tr>
<td>15</td>
<td>Secure Software Processes</td>
<td>R. Matulevičius</td>
<td>18 May</td>
</tr>
</tbody>
</table>

Thursdays

- **Lectures**
 - Room 405, 12:15 – 14:00

- **Practicals:**
 - Room 403, 14:15 – 16:00
 - Room 402, 16:15 – 18:00

Changes are possible!
Course outline / Schedule

<table>
<thead>
<tr>
<th></th>
<th>Security Risk Management</th>
<th>R. Matulevičius</th>
<th>9 February</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Security Modelling</td>
<td>R. Matulevičius</td>
<td>16 February</td>
</tr>
<tr>
<td>3</td>
<td>Security Modelling</td>
<td>R. Matulevičius</td>
<td>23 February</td>
</tr>
<tr>
<td>4</td>
<td>Security Modelling</td>
<td>R. Matulevičius</td>
<td>2 March</td>
</tr>
<tr>
<td>5</td>
<td>Security Modelling</td>
<td>R. Matulevičius</td>
<td>9 March</td>
</tr>
<tr>
<td>6</td>
<td>Security Risk Management</td>
<td>R. Matulevičius</td>
<td>16 March</td>
</tr>
<tr>
<td>7</td>
<td>RBAC: Role-based Access Control</td>
<td>R. Matulevičius</td>
<td>23 March</td>
</tr>
<tr>
<td>8</td>
<td>Model-driven Security</td>
<td>R. Matulevičius</td>
<td>30 March</td>
</tr>
<tr>
<td>9</td>
<td>Introduction</td>
<td>R. Matulevičius</td>
<td>6 April</td>
</tr>
<tr>
<td>10</td>
<td>Estonian X-Road</td>
<td>M. Freudenthal</td>
<td>13 April</td>
</tr>
<tr>
<td>11</td>
<td>Internet Voting</td>
<td>S. Heiberg</td>
<td>20 April</td>
</tr>
<tr>
<td>12</td>
<td>Dependability Requirements</td>
<td>R. Matulevičius</td>
<td>27 April</td>
</tr>
<tr>
<td>13</td>
<td>Social Engineering</td>
<td>R. Matulevičius</td>
<td>4 May</td>
</tr>
<tr>
<td>14</td>
<td>Security Patterns</td>
<td>R. Matulevičius</td>
<td>11 May</td>
</tr>
<tr>
<td>15</td>
<td>Secure Software Processes</td>
<td>R. Matulevičius</td>
<td>18 May</td>
</tr>
</tbody>
</table>

Minimal attendance requirements

Mandatory lectures:

Lecture 10 (13.April) OR Lecture 11 (20.April)

Mandatory practical:

Practicals 4 (2.March)

Changes are possible!

Changes are possible!
Workload

6 ECTS = 156 hours of study
(1 ECTS = 26 hours of study)

- Lectures – 30 hours
- Practicals – 22 hours
- Independent work – 104 hours
 - Self-study (e.g., reading literature)
 - Homework assignments

Modalities and Assessment

- **Practicals** (Exercises, Homework assignment, Workshops) – 55 % of the final grade
 - Solutions should be submitted using course Website
 - Use - [Upload function](#)
 - Solution file should be in **PDF** format.
 - There must be *authors name and surname* indicated in the submission file (written on the solution sheet).

 Grade '0' will be given if any of these requirements is not fulfilled.

 - Deadline to submit solutions - **23:59, Tuesday**
 - of next week after lecture/practicals
 - In case of the late submission - a penalty of half evaluation points will be applied.

 To be admitted to the exam, at least 30% of grade from the practical assignments needs to be collected during the semester

- **Exam** – 45 % of the final grade
Modalities and Assessment

- **Practicals** *(Exercises, Homework assignment, Workshops)* – 55% of the final grade
 - Solutions should be submitted using course Website
 - Use *Upload function*
 - Solution file should be in *PDF* format.
 - There must be *author's name and surname* indicated in the submission file (written on the solution sheet).
 - Grade '0' will be given if any of these requirements is not fulfilled.
 - Deadline to submit solutions to exercises/homework assignments: 23:59, Tuesday of next week after lecture/practicals.
 - In case of the late submission - a penalty of half evaluation points will be applied.
 - To be admitted to the exam, at least 30% of grade from the practical assignments needs to be collected during the semester.

- **Exam** – 45% of the final grade
 - Exam dates
 - **1 June** – first time
 - **8 June** – second time
 - **15 June** – *resit exam*

Previous Year Feedback

- Focus on the assignments and practice session.
- Having workshops after every class (almost every) cemented the implementation of models and reinforced the notes presented in the lecture.

- It is an awesome course, if you pay attention and work every week.
- The amount of independent work was quite a lot. It took about 6 hours per week to do properly. But it had to be done to learn about the topic.

- This course killed my all two days in week during the semester.
- This course will destroy your most of your free time in second semester and at the end don't expect to get good grade. Just be happy that you will pass this course.
Motivation

- Computer systems and software play an important role in different areas of human life
- Confidential information

- The need to secure systems and software becomes a necessity rather than an option
Security Risks in Information Systems

Security from early phases

Security analysis should be performed through the whole software development process

- Early requirements
- Late requirements
- Architectural design
- Detailed design
- Implementation and testing

- Early consideration of security allows modellers to
 - envisage threats, their consequences and countermeasures
 - discard design alternatives that do not offer a sufficient security level
 - re-scope or cancel a project if the risk is too high
What is **System**?

- **Component**
 - smartcard, a PC or piece of software
- **Infrastructure**
 - Operating system, network, etc
- **Applications**
- **IT staff**
- **Internal users and management**
- **Customers and external users**
- **Environment**

EVERYTHING !!!
How to Crack Encrypted Message?

• Acquire massive amount of computing power and brute-force **all** the possible values of the encryption key?
 – The cryptographer's dream scenario

How to Crack Encrypted Message?

• Although, what about the case where the key is **easily guessable password**?

<table>
<thead>
<tr>
<th>password</th>
<th>master</th>
</tr>
</thead>
<tbody>
<tr>
<td>123456</td>
<td>sunshine</td>
</tr>
<tr>
<td>12345678</td>
<td>ashley</td>
</tr>
<tr>
<td>qwerty</td>
<td>bailey</td>
</tr>
<tr>
<td>abc123</td>
<td>passw0rd</td>
</tr>
<tr>
<td>monkey</td>
<td>shadow</td>
</tr>
<tr>
<td>1234567</td>
<td>123123</td>
</tr>
<tr>
<td>letmein</td>
<td>654321</td>
</tr>
<tr>
<td>trustno1</td>
<td>superman</td>
</tr>
<tr>
<td>dragon</td>
<td>qazwsx</td>
</tr>
<tr>
<td>baseball</td>
<td>michael</td>
</tr>
<tr>
<td>111111</td>
<td>football</td>
</tr>
<tr>
<td>lloveyou</td>
<td></td>
</tr>
</tbody>
</table>
How to Crack Encrypted Message?

• Or, better yet, why not just ask for password?

• How about accessing the computer and installing key-logger or trojanised version of the message viewer?
 – Maybe there is already has some remote-controlled malware installed
 – Maybe the decrypted message could be read from computer’s memory or hard disk?
What is **Security engineering**?

Security engineering is concerned with lowering the risk of intentional unauthorized harm to valuable assets to a level that is acceptable to the system's stakeholders by preventing and reacting to malicious harm, misuse, threats, and security risks.

Risk can be of different form.

It is impossible to make 100% secure systems.

Different from **safety** where focus is on unintentional harm.

Stakeholders' values must be protected.

Different from safety where focus is on unintentional harm.

Firesmith, 2003

Security Risk Management Domain Model

Mayer, Dubois et al., 2008
Major Terminology

- Risk treatment decisions
- Security requirements
- Controls

- Risk
- Impact
- Event
- Vulnerability
- Threat
- Threat agent
- Attack method

- Assets
 - Business assets
 - IS assets
 - Security criterion

Asset-related concepts

- Important assets to protect, and what are the criteria to guarantee asset security
Asset

- **Asset**
 - anything that has value to the organisation and is necessary for achieving its objectives
 - technical plan
 - structure calculation process
 - architectural competence
 - operating system
 - Ethernet network
 - people encoding data
 - system administrator
 - air conditioning of server room

- This concept is the generalisation of the business asset and IS asset concepts

Business asset

- **Business asset**
 - information, process, skill inherent to the business of the organisation that has value to the organisation in terms of its business model and is necessary for achieving its objectives
 - technical plan
 - structure calculation process
 - architectural competence

- **Business assets are immaterial**
IS asset

• IS asset
 – a component or part of the IS that has value to the organisation and is necessary for achieving its objectives and supporting business assets
 • operating system
 • Ethernet network
 • people encoding data
 • system administrator
 • air conditioning of server room

• IS assets are material
 – with the exception of software

Security criterion

• Security criterion
 – property or constraint on business assets that characterises their security needs
 – act as indicators to assess the significance of a risk
 • Confidentiality
 • Integrity
 • Availability

• The security objectives of an IS are defined using security criteria on business assets
 • Confidentiality of the technical plans
 • Integrity of the structure calculation process
Risk-related concepts

• How the risk itself and its immediate components are defined

Risk

• Risk
 – combination of a threat with one or more vulnerabilities leading to a negative impact harming at least two or more of the assets

 • A hacker using social engineering on a member of the company, because of weak awareness of the staff, leading to unauthorised access to personal computers and loss of integrity of the structure calculation process

 • Threat and vulnerabilities are part of the risk event and impact is the consequence of the risk.
Impact

- **Impact**
 - potential negative consequence of a risk that may harm assets of a system or an organisation, when a threat is accomplished
 - *password discovery* (**impact on IS assets**)
 - *data destruction*
 - *failure of a component*
 - *a loss of confidentiality of technical plans* (**impact on business assets**)
 - *a loss of confidentiality of an information*
 - *a loss of integrity of a process*

- **An impact can provoke a chain reaction of impacts (or indirect impacts)**
 - *a loss of confidentiality on sensitive information leads to a loss of customer confidence*

Event

- **Event**
 - combination of a threat and one or more vulnerabilities
 - *a hacker using social engineering on a member of the company, exploiting weak awareness of the staff*
 - *a thief entering a company building thanks to deficient physical access control*
Vulnerability

• Vulnerability
 – characteristic of an IS asset or group of IS assets that can constitute a weakness or a flaw in terms of IS security
 • weak awareness of the staff
 • deficient physical access control
 • lack of fire detection

Threat

• Threat
 – potential attack, carried out by an agent that targets one or more IS assets and that may lead to harm to assets
 • a hacker using social engineering on a member of the company
 • a thief entering a company building and stealing media or documents
Threat agent

- **Threat agent**
 - an agent that can potentially cause harm to assets of the IS
 - triggers a threat and is the source of a risk
 - staff members with little technical skills and time and possibly a strong motivation to carry out an attack;
 - hacker with considerable technical skills, well equipped and strongly motivated by the money he could make

- A threat agent can be characterised by expertise, available resources and motivation

Attack method

- **Attack method**
 - standard means by which a threat agent carries out a threat
 - system intrusion
 - theft of media or documents
Risk treatment-related concepts

• What decisions, requirements and controls should be defined and implemented in order to mitigate possible risks

Risk treatment

• **Risk treatment**
 – decision of how to treat the identified risks
 – satisfies a security need, expressed in generic and functional terms, and can lead to security requirements
 • Risk avoidance
 • Risk reduction
 • Risk transfer
 • Risk retention
• **Risk avoidance**
 - Decision not to become involved in, or to withdraw from, a risk
 - Functionality of the IS are modified or discarded for avoiding the risk
 - *not connecting the IS to the Internet*

• **Risk reduction**
 - Action to lessen the probability, negative consequences, or both, associated with a risk
 - Security requirements are selected for reducing the risk
 - *taking measures to avoid network intrusions*
Risk treatment

Risk transfer

• **Risk transfer**

 – Sharing with another party the burden of loss from a risk.

 – A third party is thus related to the (or part of the) IS, ensuing sometimes some additional security requirements about third parties

 • *taking an insurance for covering a loss of service*

Risk treatment

Risk retention

• **Risk retention**

 – Accepting the burden of loss from a risk

 – No design decision is necessary in this case

 • *accepting that the service could be unavailable for 1 hour*
Security requirement

- **Security requirement**
 - a condition over the phenomena of the environment that we wish to make true by installing the IS, in order to mitigate risks
 - appropriate authentication methods shall be used to control access by remote users
 - system documentation shall be protected against unauthorised access

Control

- **Control**
 - designed means to improve security, specified by a security requirement, and implemented to comply with it
 - Examples: firewall; backup procedure; building guard.
Security Risk Management
Domain Model

- **Security needs**
 - Security objective that characterizes the application of a *security criterion* on a *business asset*

- **Business asset Value**
 - Only business assets are estimated in terms of value
 - Business assets are involved to define and estimate security objectives and to assess the significance of risk
Security Risk Management
Domain Model

- **Risk level**
 - Depends on event potentiality and impact level

- **Potentiality**
 - Is estimated through threat likelihood and vulnerability level

- **Cost**
 - Cost of buying a firewall
 - Cost of maintaining it by a security officer

- **Risk reduction**
 - Risk reduction, avoidance and transfer treatment
 - For risk retention risk reduction equals 0
Security risk management process

- Description of organisation and its environment
 - sensitive activities related to information security

 - Example:
 - Design of technical plans
 - The technical plans are created by drawers and engineers on computers connected to the Internet
Security risk management process

- Determine the security objectives to be reached
 - Confidentiality, Integrity, Availability

- Example:
 - *During their design, the technical plans should be kept confidential*

Security risk management process

- Identify risks and estimate them qualitatively or quantitatively

- Example:
 - *A rival tries to use common operating system and network protocol weaknesses to penetrate on the personal computer of an employee, where confidential technical plans are stored.*
 - *Estimated level: sufficiently high*
Security risk management process

• Risk treatment measures
 – Risk avoidance
 – Risk reduction
 – Risk transfer
 – Risk retention

 – Example:
 • Reduce the preceding risk with some security controls implemented in the IS

Security risk management process

• Security requirements - security solutions to mitigate the risks
• If security requirements are unsatisfactory
 – Revise the risk treatment step
 – Revise all of the preceding steps

 – Example:
 • Procedures for monitoring the use of information processing facilities should be established and the results of the monitoring activities reviewed regularly
Security risk management process

- Implement system countermeasures within organisation

 - Example:
 - A firewall and an Intrusion Detection System (IDS) are selected and implemented

What have we learnt?

- Security Engineering
- Domain model for Security Risk Management
 - Assets
 - Risks
 - Risk treatment
- Security Risk Measurement
- Security Risk Management Process