What’s IMPALA?

- Single reinforcement learning agent with same parameters solves a multitude of tasks, with the aid of a bunch of computers.
What’s IMPALA?

- Single reinforcement learning agent with same parameters solves a multitude of tasks, with the aid of a bunch of computers
- Published by Deepmind in 2018
What’s IMPALA?

- Single reinforcement learning agent with same parameters solves a multitude of tasks, with the aid of a bunch of computers
- Published by Deepmind in 2018
- SINGLE AGENT, 30 3D WORLD TASKS, 57 ATARI GAMES
What’s IMPALA?

- Single reinforcement learning agent with same parameters solves a multitude of tasks, with the aid of a bunch of computers
- Published by Deepmind in 2018
- SINGLE AGENT, 30 3D WORLD TASKS, 57 ATARI GAMES
- Better performance with less hardware and data requirements
Background - Brief History

- SNARC (Stochastic Neural Analog Reinforcement Calculator)
- Tabular Q Learning
- Q Network
- DQN
- A3C
- IMPALA
Background - Actor Critic Learning

Actor \equiv policy improvement

Critic \equiv policy evaluation
Background - On Policy, Off Policy

- On Policy - Instant use of learned policy
- State is important
- Off Policy - Learns Value Mapping uses another policy to make decision (Epsilon greedy)
- Exploration is enough to train
Background - Q Learning

- Value Function vs Q Function
- Off Policy
- Learning baby steps:

$$Q_{t+1}(s_t, a_t) = Q_t(s_t, a_t) + \alpha(r_{t+1} + \gamma \max_a Q_t(s_{t+1}, a) - Q_t(s_t, a_t))$$
Related Work - DQN

- DNN to estimate Q values
- Experience Replay
- Target Network (Periodic Update with Q Network)
- Clipping Rewards (All positive rewards +1, negatives -1)
Related Work - A3C

- Three A’s of Asynchronous Advantage Actor Critic
- Async : Global Network, Multiple Agents, Own copy of network params and environment
- Advantage : Discounted Reward vs Advantage,
- Advantage = Q(s,a)(Estimation, DReward) - V(s)
- Actor : Actor of Actor Critic
- Shares Gradients not observations
Related Work - A2C

- Improvement over A3C
- Sync
- Waits till every actor to finish
- Better GPU utilization (IMPALA is better!)
IMPALA

- Actors collect experiences not gradients.
- Independent actors and learners.
- Decoupling the acting and learning causes the policy in the actor to lag behind the learner.
- Solution V-Trace.
IMPALA...

A3C

IMPALA - Single Learner

IMPALA - Multiple Learners
V-Trace : Target

\[v_s \overset{\text{def}}{=} V(x_s) + \sum_{t=s}^{s+n-1} \gamma^{t-s} \left(\prod_{i=s}^{t-1} c_i \right) \delta_t V, \]

\[v_s = V(x_s) + \sum_{t=s}^{s+n-1} \gamma^{t-s} \left(r_t + \gamma V(x_{t+1}) - V(x_t) \right) \]
\[= \sum_{t=s}^{s+n-1} \gamma^{t-s} r_t + \gamma^n V(x_{s+n}), \quad (2) \]
V-Trace : Target

\[
\pi_{\bar{\rho}}(a|x) \overset{\text{def}}{=} \frac{\min (\bar{\rho}\mu(a|x), \pi(a|x))}{\sum_{b \in A} \min (\bar{\rho}\mu(b|x), \pi(b|x))}, \quad (3)
\]

Remark 1. V-trace targets can be computed recursively:

\[
v_s = V(x_s) + \delta_s V + \gamma c_s (v_{s+1} - V(x_{s+1})).
\]

Remark 2. Like in Retrace(\lambda), we can also consider an additional discounting parameter \(\lambda \in [0, 1] \) in the definition of V-trace by setting \(c_i = \lambda \min (\bar{c}, \frac{\pi(a_i|x_i)}{\mu(a_i|x_i)}) \). In the on-policy case, when \(n = \infty \), V-trace then reduces to TD(\lambda).
V-Trace: Policy Gradient, On Policy

In the on-policy case, the gradient of the value function $V^\mu(x_0)$ with respect to some parameter of the policy μ is

$$\nabla V^\mu(x_0) = \mathbb{E}_\mu \left[\sum_{s \geq 0} \gamma^s \nabla \log \mu(a_s | x_s) Q^\mu(x_s, a_s) \right],$$

where $Q^\mu(x_s, a_s) \overset{\text{def}}{=} \mathbb{E}_\mu \left[\sum_{t \geq s} \gamma^{t-s} r_t | x_s, a_s \right]$ is the state-action value of policy μ at (x_s, a_s).
V-Trace: Policy Gradient, Off Policy

Now in the off-policy setting that we consider, we can use an IS weight between the policy being evaluated $\pi_{\tilde{\rho}}$ and the behaviour policy μ, to update our policy parameter in the direction of

$$\mathbb{E}_{a_s \sim \mu(\cdot | x_s)} \left[\frac{\pi_{\tilde{\rho}}(a_s | x_s)}{\mu(a_s | x_s)} \nabla \log \pi_{\tilde{\rho}}(a_s | x_s) q_s | x_s \right]$$ \hspace{1cm} (4)
V-Trace : L2 Loss

Consider a parametric representation V_θ of the value function and the current policy π_ω. Trajectories have been generated by actors following some behaviour policy μ. The V-trace targets v_s are defined by (1). At training time s, the value parameters θ are updated by gradient descent on the $l2$ loss to the target v_s

$$(v_s - V_\theta(x_s)) \nabla_\theta V_\theta(x_s),$$
V-Trace: Update Policy with Grads

\[
\rho_s \nabla_\omega \log \pi_\omega(a_s|x_s) \left(r_s + \gamma v_{s+1} - V_\theta(x_s) \right).
\]

In order to prevent premature convergence we may add an entropy bonus, like in A3C, along the direction

\[-\nabla_\omega \sum_a \pi_\omega(a|x_s) \log \pi_\omega(a|x_s).\]

The overall update is obtained by summing these three gradients rescaled by appropriate coefficients, which are hyper-parameters of the algorithm.
Testing Environment: DMLab, Atari

- DMLab (DeepMind Lab) provides a suite of challenging 3D navigation and puzzle-solving tasks for learning agents.
- The Arcade Learning Environment (ALE) is a simple object-oriented framework that allows researchers and hobbyists to develop AI agents for Atari 2600 games.
2 Network Architectures

Model Architectures. Left: Small architecture used for training on individual levels, containing 2 convolutional layers and 1.2 million parameters. Right: Large architecture used for training on DMLab-30 multi-task challenge, containing 15 convolutional layers and 1.6 million parameters.
Single task training

- Training agent individually on 5 different DMLAB tasks.
- Tasks: Planning task, two maze navigation tasks, a laser tag task with scripted bots and a simple fruit collection task
- IMPALA is more robust to the choice of hyperparameters than A3C.
- IMPALA achieves higher scores over a larger number of combinations than A3C.
<table>
<thead>
<tr>
<th>Architecture</th>
<th>CPUs</th>
<th>GPUs</th>
<th>FPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Task 1</td>
</tr>
<tr>
<td>Single-Machine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3C 32 workers</td>
<td>64</td>
<td>0</td>
<td>6.5K</td>
</tr>
<tr>
<td>Batched A2C (sync step)</td>
<td>48</td>
<td>0</td>
<td>9K</td>
</tr>
<tr>
<td>Batched A2C (sync step)</td>
<td>48</td>
<td>1</td>
<td>13K</td>
</tr>
<tr>
<td>Batched A2C (sync traj.)</td>
<td>48</td>
<td>0</td>
<td>16K</td>
</tr>
<tr>
<td>Batched A2C (dyn. batch)</td>
<td>48</td>
<td>1</td>
<td>16K</td>
</tr>
<tr>
<td>IMPALA 48 actors</td>
<td>48</td>
<td>0</td>
<td>17K</td>
</tr>
<tr>
<td>IMPALA (dyn. batch) 48 actors¹</td>
<td>48</td>
<td>1</td>
<td>21K</td>
</tr>
<tr>
<td>Distributed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3C</td>
<td>200</td>
<td>0</td>
<td>46K</td>
</tr>
<tr>
<td>IMPALA</td>
<td>150</td>
<td>1</td>
<td>80K</td>
</tr>
<tr>
<td>IMPALA (optimised)</td>
<td>375</td>
<td>1</td>
<td>200K</td>
</tr>
<tr>
<td>IMPALA (optimised) batch 128</td>
<td>500</td>
<td>1</td>
<td>250K</td>
</tr>
</tbody>
</table>

¹ Limited by amount of rendering possible on a single machine. ² Nvidia P100
Figure 4. **Top Row:** Single task training on 5 DeepMind Lab tasks. Each curve is the mean of the best 3 runs based on final return. IMPALA achieves better performance than A3C. **Bottom Row:** Stability across hyperparameter combinations sorted by the final performance across different hyperparameter combinations. IMPALA is consistently more stable than A3C.
Multi task training

- Because of high throughput, feasible to train multiple tasks at the same time,
- Allocation of fixed number of actors per task,
- Multiple learners use different GPUs,
- Learners share gradients,
- A3C - 7.5 Days / IMPALA - 10 Hours (DMLab-30)
<table>
<thead>
<tr>
<th>Model</th>
<th>Test score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3C, deep</td>
<td>23.8%</td>
</tr>
<tr>
<td>IMPALA, shallow</td>
<td>37.1%</td>
</tr>
<tr>
<td>IMPALA-Experts, deep</td>
<td>44.5%</td>
</tr>
<tr>
<td>IMPALA, deep</td>
<td>46.5%</td>
</tr>
<tr>
<td>IMPALA, deep, PBT</td>
<td>49.4%</td>
</tr>
<tr>
<td>IMPALA, deep, PBT, 8 learners</td>
<td>49.1%</td>
</tr>
</tbody>
</table>

Table 3. Mean capped human normalised scores on DMLab-30. All models were evaluated on the test tasks with 500 episodes per task. The table shows the best score for each architecture.
The graph shows the mean capped normalized score over environment frames for different algorithms. The algorithms compared are:

- IMPALA, deep, PBT - 8 GPUs
- IMPALA, shallow
- IMPALA, deep
- IMPALA-Experts, deep
- A3C, deep

The x-axis represents the environment frames, while the y-axis represents the mean capped normalized score. The graph illustrates how each algorithm performs over time, with different lines indicating the performance of each algorithm.
<table>
<thead>
<tr>
<th>Human Normalised Return</th>
<th>Median</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3C, shallow, experts</td>
<td>54.9%</td>
<td>285.9%</td>
</tr>
<tr>
<td>A3C, deep, experts</td>
<td>117.9%</td>
<td>503.6%</td>
</tr>
<tr>
<td>IMPALA, shallow, experts</td>
<td>93.2%</td>
<td>466.4%</td>
</tr>
<tr>
<td>IMPALA, deep, experts</td>
<td>191.8%</td>
<td>957.6%</td>
</tr>
<tr>
<td>IMPALA, deep, multi-task</td>
<td>59.7%</td>
<td>176.9%</td>
</tr>
</tbody>
</table>

Table 4. Human normalised scores on Atari-57. Up to 30 no-ops at the beginning of each episode.
Conclusion

- IMPALA was better than A3C in performance
- First Deep-RL agent that has been tested on such large scale.
- Shows transfer learning is possible between multiple tasks
Thank You

Prabhant Singh and Basar Turgut