
MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

MTAT.03.094

Software Engineering

Lecture 07: Architecture

and Design ï Part I

Dietmar Pfahl

email: dietmar.pfahl@ut.ee
Fall 2013

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Schedule of Lectures

Week 01: Introduction to SE

Week 02: Requirements Engineering I

Week 03: Requirements Engineering II

Week 04: Analysis

Week 05: Development Infrastructure I

Week 06: Development Infrastructure II

Week 07: Architecture and Design

Week 08: Refactoring

Week 09: Measurement

Week 10: Agile/Lean Methods

Week 11: Verification and Validation I

 (incl. SW Quality)

Week 12: Verification and Validation II

Week 13: Process Improvement

Week 14: Course wrap-up, review and

 exam preparation

Week 15: no lecture

Week 16: no lecture

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Acknowledgements

Textbooks/Slides:

Å Ian Sommerville: Software Engineering, 9th edition, 2010
(http://www.softwareengineering-9.com/)

Å Hans van Vliet: Software Architecture, Free University of
Amsterdam, Lecture 2008

Å Richard Taylor et al.: Software Architecture, University of
California at Irvine, Lecture 2011

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Structure of Lecture 07

ÅWhat is it, why bother?

ÅArchitecture Design

ÅViewpoints and View Models

ÅArchitectural Styles

ÅArchitecture Assessment

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

The Role of the Architect

client,

users
architect developers

appearance,

behaviour

construction,

co-operation

architectural

design

visualises prescribes

requirements solutions

createsassess assess

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Pre-architecture life cycle

requirements

agreement

quality

development

stakeholders
 (few)

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Characteristics

ÅIteration mainly on functional requirements

ÅFew stakeholders involved

ÅNo balancing of functional and quality
requirements

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Adding architecture, the easy way

architecture

detailed design

implementation

requirements

agreement

quality

development

stakeholders
 (few)

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Architecture in the life cycle

requirements

architecture

quality

agreement

stakeholders
 (many)

development

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Characteristics

ÅIteration on both functional and quality
requirements

ÅMany stakeholders involved

ÅBalancing of functional and quality
requirements

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Why Is Architecture Important?

Å Architecture is the vehicle for stakeholder communication

Å Architecture manifests the earliest set of design decisions

ÅConstraints on implementation

Å Dictates organizational structure

Å Inhibits or enable quality attributes

Å Architecture is a transferable abstraction of a system

Å Product lines share a common architecture

Å Allows for template-based development

Å Basis for training

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Software Architecture ï Definition (1)

 The architecture of a software system defines
that system in terms of computational
components and interactions among those
components.

 (from Shaw and Garlan, Software Architecture, Perspectives
on an Emerging Discipline, Prentice-Hall, 1996.)

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Software Architecture

statement

Þ

procedure

Þ

module

Þ

(design) pattern

Þ

architecture

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Software Architecture ï Definition (2)

 The software architecture of a system is the
structure or structures of the system, which
comprise software elements, the externally
visible properties of those elements, and the
relationships among them.

 (from Bass, Clements, and Kazman, Software Architecture
in Practice, SEI Series in Software Engineering. Addison-
Wesley, 2003.)

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Software Architecture

Å Important issues raised in this definition:

Å multiple system structures;

Å externally visible (observable) properties of components.

Å The definition does not include:

Å the process;

Å rules and guidelines;

Å architectural styles (and patterns).

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Architectural Structures

Åmodule structure

Åconceptual, or logical structure

Åprocess, or coordination structure

Åphysical structure

Åuses structure

Åcalls structure

Ådata flow

Åcontrol flow

Åclass structure

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Software Architecture ï Definition (3)

 Architecture is the fundamental organization of
a system embodied in its components, their
relationships to each other and to the
environment and the principles guiding its
design and evolution

 (from IEEE Standard on the Recommended Practice for
Architectural Descriptions, 2000.)

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Software Architecture

ÅArchitecture is conceptual.

ÅArchitecture is about fundamental things.

ÅArchitecture exists in some context.

Architectural descriptions
are concrete, but the
architecture itself is
inherently conceptual,
and cannot be captured
in any (set of) views.

Abstraction !!!

We can only understand
qualities in context. ->
Views !!!

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Architecture in Construction of Buildings

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Other points of view

Å Architecture is high-level design

Å Architecture is overall structure of the system

Å Architecture is the structure, including the principles
and guidelines governing their design and evolution
over time

Å Architecture is components and connectors

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Software Architecture & Quality

Å The notion of quality is central in software
architecting:

Å a software architecture is devised to gain insight in the
qualities of a system at the earliest possible stage.

Å Some qualities are observable via execution:

Å performance, security, availability, functionality, usability

Å And some are not observable via execution:

Å modifiability, portability, reusability, integrability, testability

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Structure of Lecture 07

ÅWhat is it, why bother?

ÅArchitecture Design

ÅViewpoints and View Models

ÅArchitectural Styles

ÅArchitecture Assessment

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Global workflow in architecture design

context

requirements

evaluation
results

architecture

backlog

synthesis

evaluation

Quality
Constraints
Assets
Politics
...

Functions

Work to do

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Design Issues, Options and Decisions

ÅA designer is faced with a series of design
issues

Å These are sub-problems of the overall design
problem.

Å Each issue normally has several alternative
solutions (or design options)

Å The designer makes a design decision to resolve
each issue.

ÅThis process involves choosing the best option from
among the alternatives.

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Design Issues, Options and Decisions

Example: A design issue can be the type and level of security.

Å Security can be decomposed into

Å authentication (user recognition),

Å authorization (user access to data),

Å privacy (encryption of data exchanged on a public network).

Å If the architecture is for

Å a medical system, then all security sub-issues must be addressed.

Å gaming applications, probably not all of them are important, and could
be dropped in favor of, e.g., higher performance.

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Taking Decisions

Design

problem

sub -

problem

(or

issue)

sub -

problem

(or

issue)

Design

option

Design

option

Design

option

Design

option

Problem

space

Decision

space

Alternative

solutions

Alternative

solutions

Decision =

best option

Decision =

best option

Note: The decision
we take is or should
be the BEST in this
moment, and always
with respect to some
criterion. If the
criterion changes the
decision might be
not the BEST
anymore, and
maybe another
option is more
appropriate.

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Decision Space

Å The space of possible designs that
can be achieved by choosing
different sets of alternatives.

client -server

monolithic

fat -client

thin -client

client in a

separate

user interface

layer

no separate

user interface

layer

Programmed in Java

Programmed in Visual Basic

Programmed in C++

client

style

Issues that can be relevant
here in the decision process
are:
- level of flexibility;
- outsourcing/external

acquisition of client
technology (that mans need
for separate presentation ï
also relevant for the budget);

- if using the Web/Internet;
- performance; ...

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Tree or Graph?

ÅIssues and options
are not independent
...

client -server

monolithic

fat -client

thin -client

client in a

separate

user interface

layer

no separate

user interface

layer

client

style

flexibility

layered MVC

A number of options become invalid due to a
desired NFR (quality).
For example, flexibility could be achieved
through certain architectural patterns, like MVC
which facilitates separation of concerns (can be
implemented by corresponding replaceable
components), and layered architecture
restricting client-server interactions and hence
allowing to formalize the role of each
component.
If we choose any of the two, we exclude the
'monolithic' sub-tree and we need a separate
GUI layer.

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

More than just IT

ÅTechnical and non-technical issues and options
are intertwined

Å Architects deciding on the type of database

versus

Å Management deciding on new strategic partnership

 or

 Management deciding on budget

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Types of Decisions

ÅImplicit, undocumented

ÅUnaware, tacit, óof courseô knowledge

ÅExplicit, undocumented

Å Vaporizes over time

ÅExplicit, explicitly undocumented

Å Tactical, personal reasons

ÅExplicit, documented

Å Preferred, exceptional situation

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Some (tacit) decisions are related to
norms and values

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Why is documenting design
decisions important?

ÅPrevents repeating (expensive) past steps

ÅExplains why this is a good architecture

ÅEmphasizes qualities and criticality for
requirements/goals

ÅProvides context and background

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Uses of design decisions

Å Identify key decisions for a stakeholder

Å Make the key decisions quickly available. E.g.,
introducing new people and make them up2date.

Å ..., Get a rationale, Validate decisions against reqs

Å Evaluate impact

Å If we want to change an element, what are the elements
impacted (decisions, design, issues)?

Å ..., Clean up the architecture, identify important
architectural drivers

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Elements of a design decision

ÅIssues: design issues being addressed

ÅDecision

ÅStatus: e.g., pending, approved

ÅAssumptions: underlying assumptions

ÅAlternatives

ÅRationale; the why of the decision taken

ÅImplications: e.g. need for further decisions

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Pointers on design decisions

Å Hofmeister et al, Generalizing a Model of Software Architecture Design
from Five Industrial Approaches, Journal of Systems and Software, 2007

Å Tyree and Ackerman, Architecture decisions: demystifying architecture,
IEEE Software, vol. 22(2), 2005.

Å Kruchten, Lago and van Vliet, Building up and exploiting architectural
knowledge, WICSA, 2005.

Å Lago and van Vliet, Explicit assumptions enrich architectural models,
ICSE, 2005.

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Structure of Lecture 07

ÅWhat is it, why bother?

ÅArchitecture Design

ÅViewpoints and View Models

ÅArchitectural Styles

ÅArchitecture Assessment

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Software Design in UML

ÅClass diagrams, state diagrams, sequence
diagram, etc.

Questions:

ÅWho can read those diagrams?

ÅWhich type of questions do they answer?

ÅDo they provide enough information?

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Who can read those diagrams?

ÅDesigner, programmer, tester, maintainer, etc.

ÅClient?

ÅUser?

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Which type of questions do they answer?

ÅHow much will it cost?

ÅHow secure will the system be?

ÅWill it perform?

ÅHow about maintenance cost?

ÅWhat if requirement A is replaced by
requirement B?

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Analogy with building architecture

ÅOverall picture of building (client)

ÅFront view (client, ñbeautyò committee)

ÅSeparate picture for water supply (plumber)

ÅSeparate picture for electrical wiring
(electrician)

Åetc

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Architecture presentations in practice

ÅBy and large two flavors:

Å Powerpoint slides ï for managers, users,
consultants, etc

Å UML diagrams, for technicians

ÅA small sample é

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Runtime Component Deployment View Component
clientArs User machine
Search App. Server 1, App Server 2 (WebLogic 7.0)
ReserveAndBuy App. Server 1, App Server 2 (WebLogic 7.0)
Authenticate App. Server 1, App Server 2 (WebLogic 7.0)
ArsStartup App. Server 1, App Server 2 (WebLogic 7.0)
LocalRestart App. Server 1, App Server 2 (WebLogic 7.0)
ARS Database DB Server (MS SQL Server)
CreditCard Database DB Server (MS SQL Server)
CreditCard Naming server & Replication mgr
God Naming server & Replication mgr

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Application layer
This Application layer has all the boundary classes
that represent the application screens that the user
sees.

Business Services layer
The Business Services process layer has all the
controller classes that represent the use case
managers that drive the application behavior. This
layer represents the client-to-mid-tier border.

Middleware layer
The Middleware layer supports access to Relational
DBMS and OODBMS.

Base Reuse package
The Base Reuse package includes classes to
support list functions and patterns.

High-level overview of the architecture
(Logical view)

A University Course Catalogue System

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Process view of the
architecture.

Shows the tasks (processes
and threads) involved in the
system's execution, their
interactions and configurations.
Processes exist to support
student registration, professor
functions, registration closing,
and access to the external
Billing System and Course
Catalog System.

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Deployment view of the
architecture.

Shows the various physical
nodes for the most typical
platform configurations.

Also shows the allocation of
tasks (from the Process
View) to the physical nodes.

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

So, é

ÅDifferent representations

ÅFor different people

ÅFor different purposes

ÅThese representations are both descriptive
and prescriptive

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

IEEE model for architectural descriptions

Mission

Sy stemEnv ironment Architecture

Rationale
Architecture
Description

Concern

Library
Viewpoint

Viewpoint

Stakeholder

Model

View

Mission

Sy stemEnv ironment Architecture

Rationale
Architecture
Description

Concern

Library
Viewpoint

Viewpoint

Stakeholder

Model

View

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Some terms (from IEEE standard)

Å System stakeholder: an individual, team, or
organization (or classes hereof) with interests in, or
concerns relative to, a system. -> cf. Lab Task 1

Å View: a representation of a whole system from the
perspective of a related set of concerns.

Å Viewpoint: A viewpoint establishes the purposes and
audience for a view and the techniques or methods
employed in constructing a view.

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Viewpoint specification

ÅViewpoint name

ÅStakeholders addressed

ÅConcerns addressed

ÅLanguage, modeling techniques

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Kruchtenôs 4+1 View Model

Logical
Viewpoint

Implementation
Viewpoint

Process
Viewpoint

Deployment
Viewpoint

Scenarios

End-user
Functionality

Programmers
Software management

Integrators
Performance
Scalability

System engineers
Topology

Communications

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Kruchtenôs 4+1 View Model

Logical
Viewpoint

Implementation
Viewpoint

Process
Viewpoint

Deployment
Viewpoint

Scenarios

End-user
Functionality

Programmers
Software management

Integrators
Performance
Scalability

System engineers
Topology

Communications

Supports the
functional
requirements, i.e.,
the services the
system should
provide to its end
users.

Typically, it shows
the key abstractions
(e.g., classes and
interactions amongst
them).

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Kruchtenôs 4+1 View Model

Logical
Viewpoint

Implementation
Viewpoint

Process
Viewpoint

Deployment
Viewpoint

Scenarios

End-user
Functionality

Programmers
Software management

Integrators
Performance
Scalability

System engineers
Topology

Communications

Takes into account some
nonfunctional requirements,
such as performance and
system availability.
It addresses concurrency
and distribution, system
integrity, and fault-
tolerance.

The process view also
specifies which thread of
control executes each
operation of each class
identified in the logical view.

So the process view
describes the mapping of
functions to runtime
elements. It concerns the
dynamics of the system. A
process is a group of tasks
which form a logical unit. A
process can be started,
stopped, resumed, etc., and
there is communication
between processes.

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Kruchtenôs 4+1 View Model

Logical
Viewpoint

Implementation
Viewpoint

Process
Viewpoint

Deployment
Viewpoint

Scenarios

End-user
Functionality

Programmers
Software management

Integrators
Performance
Scalability

System engineers
Topology

Communications

Focuses on the
organization of the
actual software
modules in the
software-development
environment.

The software is
packaged in small
chunks (program
libraries or subsystems)
that can be developed
by one or more
developers.

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Kruchtenôs 4+1 View Model

Logical
Viewpoint

Implementation
Viewpoint

Process
Viewpoint

Deployment
Viewpoint

Scenarios

End-user
Functionality

Programmers
Software management

Integrators
Performance
Scalability

System engineers
Topology

Communications

=> Physical view:

Defines how the various
elements identified in
the logical, process,
and implementation
views (networks,
processes, tasks, and
objects) must be
mapped onto the
various nodes.

Takes into account the
system's non-functional
requirements such as
system availability,
reliability (fault-
tolerance), performance
(throughput), and
scalability.

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

4 + 1: Scenario Viewpoint

Å Consists of a small subset of important scenarios
(e.g., use cases) to show that the elements of the
four views work together seamlessly.

Å This view is redundant with the other ones (hence the
"+1"), but it plays two critical roles:

Åit acts as a driver to help designers discover architectural
elements during the architecture design;

Åit validates and illustrates the architecture design, both on
paper and as the starting point for the tests of an
architectural prototype.

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Architectural views from Bass et al
(view = representation of a structure)

Å Module views

ÅModule is unit of implementation

ÅDecomposition, uses, layered, class

Å Component and connector (C & C) views

ÅThese are runtime elements

ÅProcess (communication), concurrency, shared data (repository), client-
server

Å Allocation views

ÅRelationship between software elements and environment

ÅWork assignment, deployment, implementation

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

How to decide on which viewpoints
to elaborate

ÅWhat are the stakeholders and their concerns?

ÅWhich views address these concerns?

ÅPrioritize and possibly combine
viewpoints/views

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Structure of Lecture 07

ÅWhat is it, why bother?

ÅArchitecture Design

ÅViewpoints and View Models

ÅArchitectural Styles

ÅArchitecture Assessment

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Recap: Why Architecture?

ÅTo build scalable, robust (web) applications,
i.e. applications that can evolve successfully,
developers must involve themselves in
developing an appropriate software
architecture.

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Software Architecture ï What is it?

Software architecture

Å goes beyond algorithms and data structures that make up an
application.

Å addresses ñstructural issues [that] include

Å gross organization and global control structure;

Å protocols for communication, synchronization, and data access;

Å assignment of functionality to design elements; physical distribution;

Å composition of design elements;

Å scaling and performance; and

Å selection among design alternatives.ñ (David Garlan & Mary Shaw)

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Architecture & Design ï Levels

Å Application design occurs at several levels.

Å In an object-oriented system, decisions must be made about

Å the interfaces of an application,

Å the classes that implement these interfaces,

Å the choice of ways that classes communicate and are related to each
other (this last is usually the domain of design patterns).

Å Each level of design represents a new level of organization.

Å The architecture of an application is the most encompassing
of all design decisions.

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Architecture ï Presentation

Å In practice, software architectures are commonly treated as a collection of
components and connectors.

Å Components are the system's functional elements.

Å For example, a shopping cart, a contact manager, and a database could be
components of a software architecture.

Å Connectors are the protocols for communication between components.

Å Examples of connectors include method calls, SQL queries, and HTTP requests.

Å A system's chosen architecture determines both

Å the vocabulary of components and connectors that can be used as well as

Å the set of constraints defining how they are combined.

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Architecture ï Styles

Å The choice of a particular software architecture is made on the
basis of an overall system organization - which is to say that
there is no single-fit, perfect architecture.

Å Over time, several different software architectural styles have
been created - each having strong points and weaknesses.

Å The more popular (óhistoricalô) architectures include (Shaw & Garlan, 1996):

Å Pipes and filters

Å Data abstraction and object-oriented organization

Å Layered systems

Å Repositories

Å Event-based, implicit invocation

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Architecture ï Measures

Å Two measures important for consideration in defining an architecture's
components and connectors are a system's cohesion and coupling.

Å Cohesion is a measure of the degree to which a component has a singular
purpose.

Å The greater cohesion a component exhibits, the more focused is the component
and the fewer are the assumptions about contexts for reuse.

Å Coupling is the degree of interdependence between components.

Å The less a component relies on other components (the looser its coupling), the
more independent and reusable it is.

Å Maximized cohesion (simple components) and minimized coupling (fewer
connectors) are hallmarks of a flexible, maintainable architecture.

Å Example: event-based, implicit invocation

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Event-based, Implicit Invocation

Å An example of a well-crafted architectural style with
high cohesion and loose coupling.

Å As such, it is one of the more broadly accepted
architectural styles in software engineering.

Å Examples of implicit invocation systems abound, including
virtually all modern

Å operating systems

Å database management systems

Å integrated development environments

Å frameworks for web application development (e.g., Mach-II)
https://github.com/Mach-II/Mach-II-Framework

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

EbII ï Idea

Å Garlan and Shaw describe implicit invocation
systems:

Å "The idea behind implicit invocation is that instead of
invoking a procedure directly, a component can announce
(or broadcast) one or more events.

Å Other components in the system can register an interest in
an event by associating a procedure with the event.

Å When the event is announced the system itself invokes all
of the procedures that have been registered for the event.

Å Thus an event 'implicitly' causes the invocation of
procedures in other modules."

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

EbII ï Events and Listeners

Events:

Å Implicit invocation
systems are driven by
events.

Å Events are triggered
whenever the system
needs to do something -
such as respond to an
incoming request.

Å When an event is
announced, the system
looks up listener
components for that
event.

Listeners:

Å Components that wish to act as listeners
are registered to listen for certain events
at configuration time

Å by specification in an XML file, for instance.

Å When an event is triggered, all
registered listeners of that event are
passed the event by means of a
dynamically determined method call.

Å In this way, functions are implicitly
invoked.

Å This process of notifying listeners of an
event is called event announcement.

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

EbII ï Example Scenario

Å Let's consider how a common login/authentication
scenario can be described by events and listeners.

Å In this example, a login form is filled out by a user
and the form submitted.

Å The incoming HTTP request triggers the creation of a
LoginEvent, and the system populates the event with
information in the request.

Å Next, the system determines the listeners for
LoginEvent;

Å in this case there is only one - the AuthenticationListener.

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

EbII ï Example Scenario

Å Determined by a configuration file, the system
invokes the AuthenticationListener's tryLogin()
method, passing to it the event.

Å Based on information in the event, the tryLogin()
method will seek to authenticate the user.

Å If the authentication succeeds, a new LoginAcceptedEvent
is triggered.

Å If authentication fails, a new LoginFailedEvent is triggered.

Å The cycle then continues, with any listeners of the
new event being notified.

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

EbII ï Benefits

Å Implicit invocation architectures differ from explicit invocation
systems in that implicit invocation system components use
events to communicate with each other.

Å Connectors in such architectures are bindings between events
and component methods.

Å Because these bindings are determined dynamically at
runtime, components are loosely coupled;

Å there is no compiletime determination of which method calls will be
made.

Å Loose coupling offers software architects the great benefit of
increased flexibility and maintainability: new components can
be added by simply registering them as event listeners.

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

EbII ï Benefits

Å Loosely coupled components work together, but do not rely on
each other to do their own job.

Å The interaction policy is separate from the interacting
components, providing flexibility.

Å Components can be introduced into a system simply by
registering them for events of the system, aiding greatly in
reusability.

Å Introduction of new components does not require change in
other component interfaces, providing scalability as new
features are added.

Å Overall, implicit invocation eases system evolution.

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Patterns, Styles, and DSSAs

Software Architecture: Foundations, Theory, and Practice; Richard
N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; É 2008 John

Wiley & Sons, Inc. Reprinted with permission.

ÅPipes and filters
Å Data abstraction and

object-oriented
organization

Å Layered systems
ÅRepositories
ÅEvent-based, implicit

invocation
Å ... and many more

?

?

?

MTAT.03.094 / Lecture 07 / É Dietmar Pfahl 2013

Next Lecture

ÅDate/Time:

ÅFriday, 25-Oct, 10:15-12:00

ÅTopic:

ÅSoftware Architechture and Design ï Part II

ÅRefactoring

ÅFor you to do:

ÅWork on Lab Task 4

ÅUse consulting opportunities in labs!

