Lecture 04: Frequent pattern mining

Meelis Kull
meelis.kull@ut.ee
Autumn 2019
Lecture 04 – Frequent pattern mining

• Frequent patterns
• Frequent itemsets and association rules
• Frequent itemset mining and Apriori algorithm
• Compact representations of itemsets
• Association rule mining
• Frequent itemsets in non-transactional data
• Pattern interestingness measures
Lecture 04 – Frequent pattern mining

- **Frequent patterns**
- Frequent itemsets and association rules
- Frequent itemset mining and Apriori algorithm
- Compact representations of itemsets
- Association rule mining
- Frequent itemsets in non-transactional data
- Pattern interestingness measures
Frequent patterns

Humpty Dumpty sat on a wall,
Humpty Dumpty had a great fall;
All the King's horses and all the King's men
Couldn't put Humpty together again

Adapted from slides by Konstantin Tretyakov
Frequent patterns

Humpty Dumpty sat on a wall,
Humpty Dumpty had a great fall;
All the King's horses and all the King's men
Couldn't put Humpty together again

Adapted from slides by Konstantin Tretyakov
Frequent patterns

Humpty Dumpty sat on a wall,
Humpty Dumpty had a great fall;
All the King's horses and all the King's men
Couldn't put Humpty together again

Adapted from slides by Konstantin Tretyakov
Frequent patterns

Humpty Dumpty sat on a wall,
Humpty Dumpty had a great fall;
All the King's horses and all the King's men
Couldn't put Humpty together again

[H|D]umpty

Adapted from slides by Konstantin Tretyakov
Frequent patterns

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>

Adapted from slides by Konstantin Tretyakov
Frequent patterns

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>

Adapted from slides by Konstantin Tretyakov
Frequent patterns

Adapted from slides by Konstantin Tretyakov
Frequent patterns

Adapted from slides by Konstantin Tretyakov
Frequent patterns

[Diagram showing various paths through a website, including:
- Front page → Search → Product A → Product B → Product C
- Front page → Ad → Product B → Purchase → Product C
- Front page → Front page → Feedback
- Front page → Search → Product B → Search → Product C → Purchase
- Front page → Ad → Product C → Search → Product B → Purchase
- Front page → Front page → Front page → Front page]

Adapted from slides by Konstantin Tretyakov
Why frequent patterns

• Repetition in data always indicates **structure**.

• This structure may be due **known processes**.

• Otherwise, we want to **know about it and explain it**.

• Consequently, **searching for frequent patterns** in data is one of the most basic procedures used in descriptive data analysis.

Adapted from slides by Konstantin Tretyakov
Is a frequent pattern always interesting?

A. Yes

B. No

C. Not sure
Is a frequent pattern always interesting?

• No
 – e.g. “Front page” is frequent but uninteresting
Is an interesting pattern always frequent?

A. Yes
B. No
C. Not sure
Is an interesting pattern always frequent?

• No
 – e.g. “Diapers & Beer” may be a rare but a very valuable pattern
Frequent pattern mining

• Finding frequent patterns:
 – Primarily an algorithmic problem

• Finding “interesting” patterns:
 – Primarily a statistical problem
Types of frequent patterns

• In general, we may be interested in different types of data and types of patterns:

 – Natural language / Word sequences
 – Text / Regular expression patterns
 – Web log / Event sequences (various models)
 – Purchases / Item sets
 – …

Today

(however, many notions and ideas apply to all data / pattern types).

Adapted from slides by Konstantin Tretyakov
Frequent patterns

- **Frequent itemsets and association rules**
- Frequent itemset mining and Apriori algorithm
- Compact representations of itemsets
- Association rule mining
- Frequent itemsets in non-transactional data
- Pattern interestingness measures
Definitions

Let the data consist of transactions (i.e. sets of items)

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>

- The patterns we are interested are *itemsets*.
 - E.g. \{Milk, Eggs\} is an itemset.
 - NB! Here we are looking at sets, therefore *order does not matter* and \{Milk, Eggs\} is the same as \{Eggs, Milk\}

Adapted from slides by Konstantin Tretyakov
Definitions

The **support count** of an itemset is the number of transactions where it occurs

- \(\text{support_count}(\{\text{Milk, Eggs}\}) = 0 \)
- \(\text{support_count}(\{\text{Bread}\}) = 4 \)
- \(\text{support_count}(\{\text{Milk, Beer}\}) = 2 \)

Adapted from slides by Konstantin Tretyakov
Definitions

The **support** of an itemset is the proportion of transactions where it occurs.

- \[\text{support}\{\{\text{Milk, Eggs}\}\} = 0 \]
- \[\text{support}\{\{\text{Bread}\}\} = \frac{4}{5} = 0.8 \]
- \[\text{support}\{\{\text{Milk, Beer}\}\} = \frac{2}{5} = 0.4 \]

Adapted from slides by Konstantin Tretyakov
Support count of Milk is

A. 1
B. 2
C. 3
D. 4 ✔
E. 5

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>
Definitions

An itemset is **frequent** if its support is greater than or equal to some predefined threshold s_{min}.

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>

Let $s_{\text{min}} = 3$. Find all frequent itemsets.

{Bread}, {Milk}, {Diaper}, {Beer}, {Bread, Milk}, {Bread, Diaper}, {Milk, Diaper}, {Diaper, Beer}, {}.

Adapted from slides by Konstantin Tretyakov
Explanations for itemsets

- Suppose we found that \{Beer, Milk, Diapers\} is a frequent itemset.
- How do we explain it?
- Perhaps it is frequent due to the fact that there is a causal relationship
 \{Diapers, Milk\} => Beer
- We cannot claim causality based on transaction data, but we can find association rules:
 \{Diapers, Milk\} -> Beer
 - Often when people purchased Diapers and Milk they also purchased Beer

Adapted from slides by Konstantin Tretyakov
Association rules

• **An association rule** is an implication of the form $X \rightarrow Y$, where X and Y are itemsets. X – antecedent; Y - consequent

• The **support of a rule** is just the support of $X \cup Y$.
 \[
 \text{support}(X \rightarrow Y) = \text{support}(X \cup Y)
 \]

• The **confidence** of a rule is the proportion of transactions satisfying the right part among the transactions, which satisfy the left.
 \[
 \text{confidence}(X \rightarrow Y) = \frac{\text{support}(X \cup Y)}{\text{support}(X)}
 \]

Adapted from slides by Konstantin Tretyakov
Confidence of Milk→Bread is

A. 1/5
B. 1/3
C. 3/4
D. 4/5
E. 1

\[
\text{confidence}(X \rightarrow Y) = \frac{\text{support}(X \cup Y)}{\text{support}(X)}
\]

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>
Association rule mining

Given a set of transactions, find all rules $X \rightarrow Y$, such that

- $\text{support}(X \rightarrow Y) \geq s_{\text{min}}$
- $\text{confidence}(X \rightarrow Y) \geq c_{\text{min}}$

Solution:

- Find frequent itemset A with support $\geq s_{\text{min}}$
- Then find a partitioning of A into left and right part, so that the resulting rule has high confidence.

- The algorithmic approach is the same in both steps. We’ll start with the first one.

Adapted from slides by Konstantin Tretyakov
Lecture 04 – Frequent pattern mining

✓ Frequent patterns
✓ Frequent itemsets and association rules
 • **Frequent itemset mining and Apriori algorithm**
 • Compact representations of itemsets
 • Association rule mining
 • Frequent itemsets in non-transactional data
 • Pattern interestingness measures
Frequent itemset mining

• Brute force approach:
 – Enumerate all possible sets of items
 • For each set compute its support in the database
 • Output sets with support $\geq s_{\text{min}}$

Adapted from slides by Konstantin Tretyakov
Frequent itemset mining

• Brute force approach:
 – Enumerate all possible sets of items
 • For each set compute its support in the database
 • Output sets with support $\geq s_{\text{min}}$

 2^d iterations

• Let there be d different items, n transactions, average transaction size w.
What is the complexity of this algorithm?

$O(2^d nw)$

Adapted from slides by Konstantin Tretyakov
Faster itemset mining

- **Apriori**: Avoid scanning through all \(2^d\) itemsets.

Adapted from slides by Konstantin Tretyakov
The Apriori idea

• Suppose that
 \(\text{support}(\{A, C\}) = 42/100 \)

• It follows that
 \(\text{support}(\{A, B, C\}) \leq 42/100 \)

Adapted from slides by Konstantin Tretyakov
Anti-monotonicity of support

In general,

\[X \subseteq Y \Rightarrow \text{support}(X) \geq \text{support}(Y) \]

it follows that:

- If an itemset is **not frequent**, all of its **supersets** are also not frequent.
- If an itemset is **frequent**, all of its **subsets** are **also frequent**.

Adapted from slides by Konstantin Tretyakov
Apriori principle

The origin of the name ‘Apriori’: if a set is infrequent than the algorithm concludes *a priori* (from the earlier) that its supersets are also infrequent.

Adapted from slides by Konstantin Tretyakov
Basic Apriori algorithm

• First generate frequent 1-sets,

• Next, generate frequent 2-sets from 1-sets,

• … then generate frequent 3-sets from 2-sets,

• … etc, until there are no frequent \(k \)-sets

Adapted from slides by Konstantin Tretyakov
Basic Apriori algorithm

• First generate frequent 1-sets,
 – Simply count the frequency of each item and leave only the frequent ones.

<table>
<thead>
<tr>
<th>Item</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A}</td>
<td>10</td>
</tr>
<tr>
<td>{B}</td>
<td>15</td>
</tr>
<tr>
<td>{C}</td>
<td>3</td>
</tr>
<tr>
<td>{D}</td>
<td>4</td>
</tr>
<tr>
<td>{E}</td>
<td>6</td>
</tr>
<tr>
<td>{F}</td>
<td>10</td>
</tr>
<tr>
<td>{G}</td>
<td>4</td>
</tr>
</tbody>
</table>

Let min support count = 5

Adapted from slides by Konstantin Tretyakov
Basic Apriori algorithm

• Next, generate frequent 2-sets. This is done in several steps.

1. Generate candidate 2-sets

\{A\}: 10
\{B\}: 15
\{E\}: 6
\{F\}: 10

\{A, B\}
\{A, E\}
\{A, F\}
\{B, E\}
\{B, F\}
\{E, F\}

All subsets of a candidate set must be frequent. For 2-sets it simply means that both elements are from frequent 1-sets.

Adapted from slides by Konstantin Tretyakov
Basic Apriori algorithm

- Next, generate frequent 2-sets. This is done in several steps.

2. Count actual support count for each candidate

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>15</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
</tr>
<tr>
<td>F</td>
<td>10</td>
</tr>
<tr>
<td>A,B</td>
<td>10</td>
</tr>
<tr>
<td>A,E</td>
<td>3</td>
</tr>
<tr>
<td>A,F</td>
<td>5</td>
</tr>
<tr>
<td>B,E</td>
<td>6</td>
</tr>
<tr>
<td>B,F</td>
<td>10</td>
</tr>
<tr>
<td>E,F</td>
<td>5</td>
</tr>
</tbody>
</table>

(Requires a full pass over the transaction database for each candidate)

Adapted from slides by Konstantin Tretyakov
Basic Apriori algorithm

• Next, generate frequent 2-sets. This is done in several steps.

3. … and leave only actually frequent ones

\[
\begin{array}{c|c}
\{A\} & 10 \\
\{B\} & 15 \\
\{E\} & 6 \\
\{F\} & 10 \\
\{A, B\} & 10 \\
\{A, E\} & 3 \\
\{A, F\} & 5 \\
\{B, E\} & 6 \\
\{B, F\} & 10 \\
\{E, F\} & 5 \\
\end{array}
\]

Adapted from slides by Konstantin Tretyakov
Basic Apriori algorithm

• Now we have frequent 1- and 2-sets.

In many practical situations the algorithm stops here.

1. Because there are so many items that enumerating beyond 2-sets is impractical.
2. Because knowing frequent 2-sets is already useful enough (think of the “Beer/Diapers” example)

\[
\begin{align*}
\{A\} & : 10 \\
\{B\} & : 15 \\
\{E\} & : 6 \\
\{F\} & : 10 \\
\{A,B\} & : 10 \\
\{A,F\} & : 5 \\
\{B,E\} & : 6 \\
\{B,F\} & : 10 \\
\{E,F\} & : 5 \\
\end{align*}
\]

Adapted from slides by Konstantin Tretyakov
But let’s try generating frequent 3-sets. We proceed as before.

1. Generate candidate 3-sets

We augment each 2-set with an additional element and check that all 2-subsets of the resulting set are frequent.

Adapted from slides by Konstantin Tretyakov

This can be optimized somewhat, see, e.g:
http://www.dais.unive.it/~orlando/PAPERS/dawak01.pdf
Basic Apriori algorithm

- But let’s try generating frequent 3-sets. We proceed as before.

2. Count actual support count

\[
\begin{align*}
\{A\} &: 10 \\
\{B\} &: 15 \\
\{E\} &: 6 \\
\{F\} &: 10 \\
\{A,B\} &: 10 \\
\{A,F\} &: 5 \\
\{B,E\} &: 6 \\
\{B,F\} &: 10 \\
\{E,F\} &: 5 \\
\{A,B,F\} &: 4 \\
\{B,E,F\} &: 5 \\
\end{align*}
\]

(Again, a pass over the whole DB)

Adapted from slides by Konstantin Tretyakov
Basic Apriori algorithm

• But let’s try generating frequent 3-sets. We proceed as before.

\{A\}: 10
\{B\}: 15
\{E\}: 6
\{F\}: 10

3. … and throw away the non-frequent ones

\{A,B\}: 10
\{A,F\}: 5
\{B,E\}: 6
\{B,F\}: 10
\{E,F\}: 5

Adapted from slides by Konstantin Tretyakov
Basic Apriori algorithm

In this particular example, can there be frequent 4-sets?

\[
\begin{align*}
\{A\} &: 10 \\
\{B\} &: 15 \\
\{E\} &: 6 \\
\{F\} &: 10 \\
\{A, B\} &: 10 \\
\{A, F\} &: 5 \\
\{B, E\} &: 6 \\
\{B, F\} &: 10 \\
\{E, F\} &: 5 \\
\{B, E, F\} &: 5
\end{align*}
\]

Adapted from slides by Konstantin Tretyakov
In this particular example, can there be frequent 4-sets?

A. Yes

✓ B. No

C. Not sure

All frequent sets up to size 3:

{A}: 10
{B}: 15
{E}: 6
{F}: 10
{B,E,F}: 5
In this particular example, can there be frequent 4-sets?

No, because if, say, \{B, E, F, X\} is frequent, then \{B, E, X\} must be frequent too!

\[
\begin{align*}
\{A\} & : 10 \\
\{B\} & : 15 \\
\{E\} & : 6 \\
\{F\} & : 10 \\
\{A, B\} & : 10 \\
\{A, F\} & : 5 \\
\{B, E\} & : 6 \\
\{B, F\} & : 10 \\
\{E, F\} & : 5 \\
\{B, E, F\} & : 5 \\
\end{align*}
\]

Adapted from slides by Konstantin Tretyakov
Basic Apriori algorithm

• Generate all candidate 1-sets
• Discard 1-sets with support below s_{min}
• For $k = 2, 3, ...$
 – Generate all candidate k-sets from frequent $(k - 1)$-sets
 – Discard k-sets with an infrequent $(k - 1)$-subset
 – Discard k-sets with support below s_{min}
Compare to naïve algorithm

- For \(k=1,2,3,\ldots \)
 - Generate all candidate \(k \)-sets
 - Discard \(k \)-sets with support below \(S_{\text{min}} \)
Many optimizations are possible

• Avoid generating the separate candidate set explicitly (do it on-the-fly while counting).
• Store \(k\)-sets in a hash tree data structure, (speeds up the counting/generation process).
• Use only a part of the whole transaction database (sample or partition)
• Use Bloom-filter like data structures to reduce candidate set.
 – Bloom filter: probabilistic data structure to represent sets; replies to queries either “possibly in set” or “definitely not in set”

Adapted from slides by Konstantin Tretyakov (see, e.g. http://i.stanford.edu/~ullman/mmds/ch6a.pdf)
Lecture 04 – Frequent pattern mining

✓ Frequent patterns
✓ Frequent itemsets and association rules
✓ Frequent itemset mining and Apriori algorithm

• **Compact representations of itemsets**
• Association rule mining
• Frequent itemsets in non-transactional data
• Pattern interestingness measures
Compact representation of frequent itemsets

If \(\{A, B, C, D, E\} \) is frequent, then also those sets are frequent:

\[
\{A\}, \{B\}, \{C\}, \{D\}, \{E\}, \\
\{A, B\}, \{A, C\}, \{A, D\}, \{A, E\}, \{B, C\}, \\
\{B, D\}, \{B, E\}, \{C, D\}, \{C, E\}, \{D, E\}, \\
\{A, B, C\}, \{A, B, D\}, \{A, B, E\}, \{A, C, D\}, \{A, C, E\}, \\
\{A, D, E\}, \{B, C, D\}, \{B, C, E\}, \{B, D, E\}, \{C, D, E\}, \\
\{A, B, C, D\}, \{A, B, C, E\}, \{A, B, D, E\}, \\
\{A, C, D, E\}, \{B, C, D, E\}
\]

Do we really want our algorithm to report those?

Adapted from slides by Konstantin Tretyakov
Maximal frequent itemsets

An itemset is maximal frequent if none of its immediate supersets is frequent.

© Tan, Steinbach, Kumar
Introduction to Data Mining
Maximal frequent itemsets

• Why is maximality useful?
• Frequent itemsets = Subsets of maximal frequent itemset

• However, if s_{min} is changed, then need to find maximal frequent itemsets again
Closed itemsets

An itemset is closed if none of its immediate supersets has the same support as the itemset.

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{A,B}</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>{B,C,D}</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>{A,B,C,D}</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>{A,B,D}</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>{A,B,C,D}</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A}</td>
<td>4</td>
</tr>
<tr>
<td>{B}</td>
<td>5</td>
</tr>
<tr>
<td>{C}</td>
<td>3</td>
</tr>
<tr>
<td>{D}</td>
<td>4</td>
</tr>
<tr>
<td>{A,B}</td>
<td>4</td>
</tr>
<tr>
<td>{A,C}</td>
<td>2</td>
</tr>
<tr>
<td>{A,D}</td>
<td>3</td>
</tr>
<tr>
<td>{B,C}</td>
<td>3</td>
</tr>
<tr>
<td>{B,D}</td>
<td>4</td>
</tr>
<tr>
<td>{C,D}</td>
<td>3</td>
</tr>
</tbody>
</table>

Closed itemsets highlighted with yellow

© Tan, Steinbach, Kumar

Introduction to Data Mining
Note that Tan, Steinbach, Kumar have used 'support' to stand for 'support count'. We will still use 'support count' here.

Closed itemsets highlighted with yellow

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
<th>Support count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{A,B}</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>{B,C,D}</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>{A,B,C,D}</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>{A,B,D}</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>{A,B,C,D}</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Support count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A,B,C}</td>
<td>2</td>
</tr>
<tr>
<td>{A,B,D}</td>
<td>3</td>
</tr>
<tr>
<td>{A,C,D}</td>
<td>2</td>
</tr>
<tr>
<td>{B,C,D}</td>
<td>3</td>
</tr>
<tr>
<td>{A,B,C,D}</td>
<td>2</td>
</tr>
</tbody>
</table>
Closed itemsets

• Closed itemsets = Maximal frequent itemsets across all s_{min}

• Why is closeness useful?

• Finding all frequent itemsets for a fixed s_{min}:
 – Frequent itemsets = All closed itemsets with support at least s_{min} and all their subsets
Can an itemset be closed and not maximal

A. Yes
B. No
C. Not sure
Quiz

• Can an itemset be:
 – **Closed and not Maximal? Yes.**
 • E.g. adding any item will reduce support, but adding some items will still make a frequent set.
Can an itemset be not closed and maximal

A. Yes
B. No
C. Not sure

Response Counter
Quiz

• Can an itemset be:
 – Closed and not Maximal? Yes.
 • E.g. adding any item will reduce support, but adding some items will still make a frequent set.
 – Not closed and Maximal? No.
 • Not closed, hence we can add some other item without reducing support.
Can an itemset be closed and maximal

A. Yes
B. No
C. Not sure
Quiz

• Can an itemset be:
 – Closed and not Maximal? Yes.
 • E.g. adding any item will reduce support, but adding some items will still make a frequent set.
 – Not closed and Maximal? No.
 • Not closed, hence we can add some other item without reducing support.
 – **Closed and Maximal? Yes.**
 • Adding any item will reduce support and make the set infrequent.

Adapted from slides by Konstantin Tretyakov
Closed vs maximal frequent itemsets

- Frequent Itemsets
 - Closed Frequent Itemsets
 - Maximal Frequent Itemsets
Intermediate summary

• **Frequent itemsets** are interesting because those correspond to **structure in the data**.

• **Association rules** identify predictive relationships within frequent itemsets

• **Apriori-like algorithms** search for frequent sets better than brute-force.

• It is sufficient to find only **maximal itemsets** (or **closed itemsets**, if some flexibility in changing cutoff later is needed).

Adapted from slides by Konstantin Tretyakov
Lecture 04 – Frequent pattern mining

✓ Frequent patterns
✓ Frequent itemsets and association rules
✓ Frequent itemset mining and Apriori algorithm
✓ Compact representations of itemsets
 • **Association rule mining**
 • Frequent itemsets in non-transactional data
 • Pattern interestingness measures
Recall association rule mining:

- **Problem:** find association rules $X \rightarrow Y$ with
 - Support at least S_{min}
 - Confidence at least C_{min}
- **Solution:**
 - Find frequent itemsets with support at least S_{min}
 - For each itemset find a split into $X \rightarrow Y$, which ensures required confidence.

Adapted from slides by Konstantin Tretyakov
Rule generation

• Suppose we found that \(\{A, B, C, D\} \) is a frequent itemset with the necessary support.

• We can make a variety of rules from it:
 - \(\{A\} \rightarrow \{B, C, D\} \)
 - \(\{B\} \rightarrow \{A, C, D\} \)
 - ...
 - \(\{A, B\} \rightarrow \{C, D\} \)
 - ...
 - \(\{B, C, D\} \rightarrow \{A\} \)

• How to efficiently find those which satisfy the confidence threshold?

Adapted from slides by Konstantin Tretyakov
Rule generation

• Recall that

\[
\text{confidence} \left(\{A\} \rightarrow \{B, C, D\} \right) = \frac{\text{support} \left(\{A, B, C, D\} \right)}{\text{support} \left(\{A\} \right)}
\]

\[
\text{confidence} \left(\{A, B\} \rightarrow \{C, D\} \right) = \frac{\text{support} \left(\{A, B, C, D\} \right)}{\text{support} \left(\{A, B\} \right)}
\]

\[
\text{confidence} \left(\{A, C, D\} \rightarrow \{B\} \right) = \frac{\text{support} \left(\{A, B, C, D\} \right)}{\text{support} \left(\{A, C, D\} \right)}
\]
Rule generation

• Recall that

\[\text{confidence}(\{A\} \rightarrow \{B, C, D\}) = \frac{\text{support}(\{A, B, C, D\})}{\text{support}(\{A\})} \]

• Consequently, among all rules built on the set \(\{A, B, C, D\} \), confidence is inverse proportional to the support of antecedent (the left part of the rule).

• I.e. confidence is monotonic with respect to antecedent (and anti-monotonic with respect to consequent).

Adapted from slides by Konstantin Tretyakov
Rule generation

• Suppose we are converting an Itemset into a Rule = Antecedent → Consequent

• We want to find rules with confidence(Rule) ≥ \(c_{\text{min}} \)

• This is equivalent to \(\frac{\text{support(Itemset)}}{\text{support(Antecedent)}} \) ≥ \(c_{\text{min}} \)

• This is equivalent to \(\text{support(Antecedent)} \leq \frac{\text{support(Itemset)}}{c_{\text{min}}} \)
Rule generation

In other words, you can use Apriori for rule generation from a found frequent set.
Rule generation

• When generating rules from an itemset:
 – Find all subsets with support below a threshold
 – This is inverse to the frequent itemset task

• Apply apriori algorithm (in reverse):
 – Start from the full subset as antecedent and empty consequent
 – Gradually move items from antecedent to consequent
Basic Apriori for generating all high-confidence rules from an itemset

- Generate all 1-rules with consequent size 1
- Discard 1-rules with confidence below c_{min}
- For $k = 2, 3, ...$
 - Generate all candidate k-rules from confident $(k - 1)$-rules by combining consequents
 - Discard k-rules with a non-confident $(k - 1)$-sub-rule (with respect to consequent sets)
 - Discard k-rules with confidence below c_{min}
Lecture 04 – Frequent pattern mining

✓ Frequent patterns
✓ Frequent itemsets and association rules
✓ Frequent itemset mining and Apriori algorithm
✓ Compact representations of itemsets
✓ Association rule mining

• **Frequent itemsets in non-transactional data**
• Pattern interestingness measures
Frequent itemsets in non-transactional data

- Many non-transactional datasets can be converted to transactional

- For example:

<table>
<thead>
<tr>
<th>Person ID</th>
<th>Age</th>
<th>Gender</th>
<th>Number of children</th>
</tr>
</thead>
<tbody>
<tr>
<td>48472</td>
<td>30-40</td>
<td>Female</td>
<td>3</td>
</tr>
<tr>
<td>93719</td>
<td>10-20</td>
<td>Male</td>
<td>1</td>
</tr>
<tr>
<td>40184</td>
<td>0-10</td>
<td>Female</td>
<td>0</td>
</tr>
</tbody>
</table>

- Can be converted into:

<table>
<thead>
<tr>
<th>Transaction ID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>48472</td>
<td>Age_30_40, Female, Has_3_children</td>
</tr>
<tr>
<td>93719</td>
<td>Age_10_20, Male, Has_1_child</td>
</tr>
<tr>
<td>40184</td>
<td>Age_below_10, Female, Has_no_children</td>
</tr>
</tbody>
</table>

- Example rule: \(\{\text{Age_below_10}\} \rightarrow \text{Has_no_children} \)
Lecture 04 – Frequent pattern mining

✓ Frequent patterns
✓ Frequent itemsets and association rules
✓ Frequent itemset mining and Apriori algorithm
✓ Compact representations of itemsets
✓ Association rule mining
✓ Frequent itemsets in non-transactional data

• Pattern interestingness measures
Found the frequent patterns, what next?

• Are the discovered patterns useful for the business?
 Often: “Alas! Too many patterns!”

• Need to rank patterns by interestingness

• How to measure interestingness?
 – Depends on the business
 (depends on the goal in the application domain)
Rank patterns by interestingness
Pattern interestingness

• How to measure interestingness?
 – Depends on the business
 (depends on the goal in the application domain)
Example application scenarios for association rules

- Client has product A (e.g. cereals) in the basket of an online grocery store

 - Scenario 1 (Prediction):
 - Show 3 products that are most likely to be added

 - Scenario 2 (Recommendation):
 - Recommend 3 products commonly purchased together with product A

 - Scenario 3 (Combined discounts):
 - Offer 3 products with a discount as the client might consider these if discounted
Example dataset

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Butter, Cereals, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Apple, Bread, Cereals, Milk</td>
</tr>
<tr>
<td>3</td>
<td>Bread, Cereals</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Butter, Jam</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Jam</td>
</tr>
</tbody>
</table>

Suppose this is the database of our past client transactions. Now we have a client with Cereals in the shopping basket.

Let us convert into a different format:

<table>
<thead>
<tr>
<th></th>
<th>Cereals</th>
<th>Bread</th>
<th>Milk</th>
<th>Apple</th>
<th>Butter</th>
<th>Jam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Scenario 1: Prediction

- Show 3 products that are most likely to be added

<table>
<thead>
<tr>
<th></th>
<th>Cereals</th>
<th>Bread</th>
<th>Milk</th>
<th>Apple</th>
<th>Butter</th>
<th>Jam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- \{Cereals\} -> \{Bread\} \hspace{2cm} \text{confidence: 3/3}
- \{Cereals\} -> \{Milk\} \hspace{2cm} \text{confidence: 2/3}
- \{Cereals\} -> \{Apple\} \hspace{2cm} \text{confidence: 1/3}
Scenario 2: Recommendation

- Recommend 3 products commonly purchased together with Cereals

<table>
<thead>
<tr>
<th></th>
<th>Cereals</th>
<th>Bread</th>
<th>Milk</th>
<th>Apple</th>
<th>Butter</th>
<th>Jam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- \{Cereals\} \rightarrow \{Bread\} ?
- **No point in recommending Bread, because everyone buys Bread**
Scenario 2: Recommendation

- Recommend 3 products commonly purchased together with Cereals

<table>
<thead>
<tr>
<th></th>
<th>Cereals</th>
<th>Bread</th>
<th>Milk</th>
<th>Apple</th>
<th>Butter</th>
<th>Jam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Should predict products which become more likely given that Cereals are in the basket
Scenario 2: Recommendation

- Recommend 3 products commonly purchased together with Cereals

<table>
<thead>
<tr>
<th></th>
<th>Cereals</th>
<th>Bread</th>
<th>Milk</th>
<th>Apple</th>
<th>Butter</th>
<th>Jam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

confidence({}->…)
- 1.0
- 0.4
- 0.2
- 0.4
- 0.4

- Should predict products which become more likely given that Cereals are in the basket
Scenario 2: Recommendation

- Recommend 3 products commonly purchased together with Cereals

<table>
<thead>
<tr>
<th></th>
<th>Cereals</th>
<th>Bread</th>
<th>Milk</th>
<th>Apple</th>
<th>Butter</th>
<th>Jam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

confidence({})-→...

| | confidence({})-→...
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>0.4</td>
</tr>
<tr>
<td>5</td>
<td>0.4</td>
</tr>
</tbody>
</table>

confidence({Cereals})-→...

| | confidence({Cereals})-→...
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>0.667</td>
</tr>
<tr>
<td>3</td>
<td>0.333</td>
</tr>
<tr>
<td>4</td>
<td>0.333</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
</tr>
</tbody>
</table>

- Should predict products which become more likely given that Cereals are in the basket
New notation and new measure

- $P(X)$ – support of itemset X
- Confidence of rule $X \rightarrow Y$:
 $$\text{confidence}(X \rightarrow Y) = \frac{P(X \cup Y)}{P(X)}$$
- New measure ‘lift’:
 $$\text{lift}(X \rightarrow Y) = \frac{\text{confidence}(X \rightarrow Y)}{\text{confidence}(\emptyset \rightarrow Y)} = \frac{P(X \cup Y)}{P(X)P(Y)}$$
- Lift is related to statistical independence:
 - $\text{lift}(X \rightarrow Y) > 1$ X, Y positively correlated
 - $\text{lift}(X \rightarrow Y) = 1$ X, Y statistically independent
 - $\text{lift}(X \rightarrow Y) < 1$ X, Y negatively correlated
Scenario 2: Recommendation

- Recommend 3 products commonly purchased together with Cereals

<table>
<thead>
<tr>
<th></th>
<th>Cereals</th>
<th>Bread</th>
<th>Milk</th>
<th>Apple</th>
<th>Butter</th>
<th>Jam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>confidence({}-{})</th>
<th>confidence({Cereals}-{})</th>
<th>Lift</th>
</tr>
</thead>
<tbody>
<tr>
<td>confidence({}-{})</td>
<td>1.0</td>
<td>0.4</td>
<td>1.0</td>
</tr>
<tr>
<td>confidence({Cereals}-{})</td>
<td>1.0</td>
<td>0.667</td>
<td>1.667</td>
</tr>
<tr>
<td>Lift</td>
<td>1.0</td>
<td>1.667</td>
<td>0.833</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>0.333</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>0.333</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Scenario 2: Recommendation

• Recommend 3 products commonly purchased together with Cereals

<table>
<thead>
<tr>
<th></th>
<th>Cereals</th>
<th>Bread</th>
<th>Milk</th>
<th>Apple</th>
<th>Butter</th>
<th>Jam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- \{Cereals\} \rightarrow \{Milk\} \quad \text{lift: } \frac{2/3}{2/5} = \frac{5}{3}
- \{Cereals\} \rightarrow \{Apple\} \quad \text{lift: } \frac{1/3}{1/5} = \frac{5}{3}
- \{Cereals\} \rightarrow \{Bread\} \quad \text{lift: } \frac{3/3}{5/5} = \frac{1}{1}
Scenario 3: Combined discounts

- Offer 3 products with a discount as the client might consider these if discounted

<table>
<thead>
<tr>
<th></th>
<th>Cereals</th>
<th>Bread</th>
<th>Milk</th>
<th>Apple</th>
<th>Butter</th>
<th>Jam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- \{Cereals\} \rightarrow \{Milk\} perhaps people buy milk anyways?
- \{Cereals\} \rightarrow \{Apple\} is this a better rule?
- Not clear what measure to use here
- Need more domain knowledge
Take-home message

• Pattern evaluation measure should be derived based on the domain knowledge

• Next slide has some known measures
Interestness measures for association patterns

<table>
<thead>
<tr>
<th>#</th>
<th>Measure</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ϕ-coefficient</td>
<td>$\frac{P(A, B) - P(A)P(B)}{\sqrt{(P(A)P(B)(1-P(A))(1-P(B)))}}$</td>
</tr>
<tr>
<td>2</td>
<td>Goodman-Kruskal's (λ)</td>
<td>$\frac{\sum_j \max_k P(A_j, B_k) + \sum_k \max_j P(A_j, B_k) - \max_j P(A_j) - \max_k P(B_k)}{2 - \max_j P(A_j) - \max_k P(B_k)}$</td>
</tr>
<tr>
<td>3</td>
<td>Odds ratio (α)</td>
<td>$\frac{P(A, B)P(A, B)}{P(A)P(B)}$</td>
</tr>
<tr>
<td>4</td>
<td>Yule's Q</td>
<td>$\frac{P(A, B)P(\overline{A}B) - P(A, \overline{B})P(\overline{A}, B)}{P(A, B) + P(A, \overline{B})P(\overline{A}, B)} = \frac{\alpha - 1}{\alpha + 1}$</td>
</tr>
<tr>
<td>5</td>
<td>Yule's Y</td>
<td>$\frac{\sqrt{P(A, B)P(\overline{A}, B)} - \sqrt{P(A, \overline{B})P(\overline{A}, B)}}{\sqrt{P(A, B)P(\overline{A}, B)} + \sqrt{P(A, \overline{B})P(\overline{A}, B)}} = \frac{\sqrt{\alpha - 1}}{\sqrt{\alpha + 1}}$</td>
</tr>
<tr>
<td>6</td>
<td>Kappa (κ)</td>
<td>$\frac{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}{\sum_i \sum_j P(A_i, B_j)\log P(A_i)P(B_j)}$</td>
</tr>
<tr>
<td>7</td>
<td>Mutual Information ($I(M)$)</td>
<td>$\min(-\sum_i P(A_i)\log P(A_i), -\sum_j P(B_j)\log P(B_j))$</td>
</tr>
<tr>
<td>8</td>
<td>J-Measure (J)</td>
<td>$\max(P(A, B)\log\left(\frac{P(B</td>
</tr>
<tr>
<td>9</td>
<td>Gini index (G)</td>
<td>$\max\left(\frac{P(A)[P(B</td>
</tr>
<tr>
<td>10</td>
<td>Support (s)</td>
<td>$P(A, B)$</td>
</tr>
<tr>
<td>11</td>
<td>Confidence (c)</td>
<td>$\max(P(B</td>
</tr>
<tr>
<td>12</td>
<td>Laplace (L)</td>
<td>$\max\left(\frac{NP(A, B) + 1}{NP(A) + 2}, \frac{NP(A, B) + 1}{NP(B) + 2}\right)$</td>
</tr>
<tr>
<td>13</td>
<td>Conviction (V)</td>
<td>$\max\left(\frac{P(A)P(B)}{P(AB)}, \frac{P(B)P(A)}{P(BA)}\right)$</td>
</tr>
<tr>
<td>14</td>
<td>Interest (I)</td>
<td>$\frac{P(A, B)^2}{P(AB)}$</td>
</tr>
<tr>
<td>15</td>
<td>cosine (IS)</td>
<td>$\sqrt{P(A)P(B)}$</td>
</tr>
<tr>
<td>16</td>
<td>Piatetsky-Shapiro's (PS)</td>
<td>$P(A, B) - P(A)P(B)$</td>
</tr>
<tr>
<td>17</td>
<td>Certainty factor (F)</td>
<td>$\max\left(\frac{P(B</td>
</tr>
<tr>
<td>18</td>
<td>Added Value (AV)</td>
<td>$\max(P(B</td>
</tr>
<tr>
<td>19</td>
<td>Collective strength (S)</td>
<td>$\frac{P(A, B) + P(\overline{A})P(\overline{B})}{P(A)P(B)} \times \frac{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}{P(AB)}$</td>
</tr>
<tr>
<td>20</td>
<td>Jaccard (ζ)</td>
<td>$\frac{P(A) + P(B) - P(A, B)}{\sqrt{P(A, B)\max(P(B</td>
</tr>
<tr>
<td>21</td>
<td>Klosgen (K)</td>
<td>$\sqrt{P(A, B)\max(P(B</td>
</tr>
</tbody>
</table>

Source:
Tan PN, Kumar V, Srivastava J. Selecting the right interestness measure for association patterns. ACM SIGKDD International Conference on Knowledge discovery and data mining, 2002.
Interestingness measures for association patterns

Support and **Confidence** are the same as we know them except that confidence is here maximum of confidence \((A \rightarrow B)\) and confidence \((B \rightarrow A)\)

<table>
<thead>
<tr>
<th>Measure</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support</td>
<td>(P(A, B))</td>
</tr>
<tr>
<td>Confidence</td>
<td>(\max(P(B</td>
</tr>
<tr>
<td>Laplace</td>
<td>(\frac{P(A,B) + 1}{NP(A) + N</td>
</tr>
<tr>
<td>Conviction</td>
<td>(\frac{P(A,B)}{P(A)p(B)})</td>
</tr>
<tr>
<td>Interest</td>
<td>(\frac{P(A,B)}{P(A)p(B)})</td>
</tr>
<tr>
<td>cosine</td>
<td>(\frac{\sqrt{P(A)p(B)}}{P(A,B) - P(A)p(B)})</td>
</tr>
<tr>
<td>Klosgen</td>
<td>(\sqrt{P(A,B) + P(A)p(B)})</td>
</tr>
</tbody>
</table>

Interest is an old name for **Lift**

Source:
Tan PN, Kumar V, Srivastava J. Selecting the right interestingness measure for association patterns. ACM SIGKDD International Conference on Knowledge discovery and data mining, 2002.
Useful properties of measures

- Some properties that an interestingness measure might have or not:
 - **Symmetricity**: value does not change if X and Y are swapped: $\text{measure}(X \rightarrow Y) = \text{measure}(Y \rightarrow X)$
 - **Scaling invariance**: value does not change if all transactions with X (or Y) are duplicated
 - **Inversion invariance**: value does not change if X (or Y) is inverted (removed from where it was present and added to where it was absent)
 - **Invariant to null additions**: value does not change if transactions without X and Y are added
Lecture 04 – Frequent pattern mining

✓ Frequent patterns
✓ Frequent itemsets and association rules
✓ Frequent itemset mining and Apriori algorithm
✓ Compact representations of itemsets
✓ Association rule mining
✓ Frequent itemsets in non-transactional data
✓ Pattern interestingness measures
Quotes

• “Nature uses only the longest threads to weave her patterns, so that each small piece of her fabric reveals the organization of the entire tapestry.”
 – Richard P. Feynman

• “Nobody knows the future with certainty. We can, however, identify ongoing patterns of change.”
 – Alvin Toffler

• “I'm a student of patterns. At heart, I'm a physicist. I look at everything in my life as trying to find the single equation, the theory of everything.”
 – Will Smith

• Source: https://www.brainyquote.com