Arvutiteaduse instituut
  1. Kursused
  2. 2022/23 kevad
  3. Tehisnärvivõrgud (LTAT.02.001)
EN
Logi sisse

Tehisnärvivõrgud 2022/23 kevad

  • Main
  • Timetable
  • Practices
  • Projects
  • Exam
  • Resources

Neural Networks (LTAT.02.001)

Important: The first lecture is on 07.02.2023. Please note that during first two weeks there will be no practice sessions. Check the tab Timetable for a detailed schedule.

The course presents the main concepts of the theory and practice of modern neural networks. It also gives students the basic understanding and tools to be able to independently apply neural networks to real problems.

The lectures are based on the book "Deep Learning" by Ian Goodfellow and Yoshua Bengio and Aaron Courville. In practices we are following the excellent Stanford university course "Convolutional Neural Networks for Visual Recognition" by Andrej Karpathy, Justin Johnson and Fei-Fei Li.

Lectures:
Tuesdays 14:15 room 1019

Practices:
No Practices for the first two weeks!
Group 1: Wednesdays 10:15 room 2048
Group 2: Thursdays 12:15 room 1022

We will be using this Campuswire forum for communication between students and instructors, questions, etc. If you are registered to the course, you will receive an invitation link to it. In case you don't, for some reason, please contact one of the teaching assistants (contacts are in this page) or use this link to join the forum.

Grading

  • Homeworks will give 30% of the final grade.
  • Practice exam will give 30% of the final grade.
  • A project will give 40% of the final grade.

However to pass the course you are required to at least get 50% of EACH component (homework, project, and exam). Attendance is not a factor in your grade, however, your presence during practice sessions allows us to assist and guide you with the material and assignments.

Contacts

Lecturers:

  • Raul Vicente, raulvicente@gmail.com
  • Kallol Roy, kallol.roy@ut.ee

and teaching assistants:

  • Marharyta Domnich, marharyta.domnich@gmail.com
  • Tarun Khajuria, tarunkhajuria42@gmail.com
  • Victor Pinheiro, victor.pinheiro@ut.ee
  • Giacomo Magnifico, giacomo.magnifico@ut.ee
  • Arvutiteaduse instituut
  • Loodus- ja täppisteaduste valdkond
  • Tartu Ülikool
Tehniliste probleemide või küsimuste korral kirjuta:

Kursuse sisu ja korralduslike küsimustega pöörduge kursuse korraldajate poole.
Õppematerjalide varalised autoriõigused kuuluvad Tartu Ülikoolile. Õppematerjalide kasutamine on lubatud autoriõiguse seaduses ettenähtud teose vaba kasutamise eesmärkidel ja tingimustel. Õppematerjalide kasutamisel on kasutaja kohustatud viitama õppematerjalide autorile.
Õppematerjalide kasutamine muudel eesmärkidel on lubatud ainult Tartu Ülikooli eelneval kirjalikul nõusolekul.
Tartu Ülikooli arvutiteaduse instituudi kursuste läbiviimist toetavad järgmised programmid:
euroopa sotsiaalfondi logo