Neural Networks (LTAT.02.001)
Important: The first lecture is on 07.02.2023. Please note that during first two weeks there will be no practice sessions. Check the tab Timetable for a detailed schedule.
The course presents the main concepts of the theory and practice of modern neural networks. It also gives students the basic understanding and tools to be able to independently apply neural networks to real problems.
The lectures are based on the book "Deep Learning" by Ian Goodfellow and Yoshua Bengio and Aaron Courville. In practices we are following the excellent Stanford university course "Convolutional Neural Networks for Visual Recognition" by Andrej Karpathy, Justin Johnson and Fei-Fei Li.
Lectures:
Tuesdays 14:15 room 1019
Practices:
No Practices for the first two weeks!
Group 1: Wednesdays 10:15 room 2048
Group 2: Thursdays 12:15 room 1022
We will be using this Campuswire forum for communication between students and instructors, questions, etc. If you are registered to the course, you will receive an invitation link to it. In case you don't, for some reason, please contact one of the teaching assistants (contacts are in this page) or use this link to join the forum.
Grading
- Homeworks will give 30% of the final grade.
- Practice exam will give 30% of the final grade.
- A project will give 40% of the final grade.
However to pass the course you are required to at least get 50% of EACH component (homework, project, and exam). Attendance is not a factor in your grade, however, your presence during practice sessions allows us to assist and guide you with the material and assignments.
Contacts
Lecturers:
- Raul Vicente, raulvicente@gmail.com
- Kallol Roy, kallol.roy@ut.ee
and teaching assistants:
- Marharyta Domnich, marharyta.domnich@gmail.com
- Tarun Khajuria, tarunkhajuria42@gmail.com
- Victor Pinheiro, victor.pinheiro@ut.ee
- Giacomo Magnifico, giacomo.magnifico@ut.ee