Arvutiteaduse instituut
  1. Kursused
  2. 2021/22 kevad
  3. Tehisnärvivõrgud (LTAT.02.001)
EN
Logi sisse

Tehisnärvivõrgud 2021/22 kevad

  • Main
  • Timetable
  • Practices
  • Projects
  • Exam
  • Resources

Timetable

Lecture Practice Bonus homework
15.02.2022Lecture 1: Introduction
(slides)(video link)
17.02.2022Practice replaced by lecture 2 (link to zoom here):
Probability and Information theory
(slides)(video link)(book chapter)
No bonus points for these tutorials.
Install Anaconda
Python Numpy Tutorial
IPython Tutorial
22.02.2022Lecture 3: Basics of Machine Learning
(slides)(video link)(book chapter)
23.02.2022 24.02.2022Practice 1: k-Nearest Neighbor classifier
(background)(HW1)
HW Deadline : 08.03.2022 at 23:59
(video link)(session slides)(session notebook)
no bonus task
01.03.2022Lecture 4: Feed-forward networks
(slides)(video link)(book chapter)
02.03.2022 03.03.2022Extra Practice: Revision of derivatives, gradients and its use in Neural Networks
(video link)
no bonus task
08.03.2022Lecture 5: Back-propagation
(slides)(video link)(book chapter)
09.03.2022 10.03.2022Practice 2: Implementing a Softmax classifier
(background)(HW2)(Video: Part 1)(Video: Part 2)
HW Deadline : 15.03.2022 at 23:59
no bonus task
15.03.2022Lecture 6: Optimization and regularization
(slides)(video link)(optimization book chapter) (regularization book chapter)
16.03.2022 17.03.2022Practice 3: Two-Layer Neural Network
(background1)(background2)(HW3)(video link)
HW Deadline: 22.03.2022 at 23:59
accuracy above 52% (max 5pts)
22.03.2022Lecture 7: Convolutional neural networks
(slides)(video link)(convnets chapter)
23.03.2022 24.03.2022Practice 4: Fully-connected Neural Network
(background1)(background2)(background3)(HW4)(video link)
Separate notebook about dropout
29.03.2022Lecture 8: Sequential modeling: Recurrent neural networks
(slides)(video link)
30.03.2022 31.03.2022Practice 5: Convolutional Networks
(background)(HW5)(video link)
Separate notebook about Batch Normalization
05.04.2022Lecture 9: Applications (by an industry representative)
(video)
06.04.2022 07.04.2022Practice 6: Image classification using Keras
(HW6)(video link)(session slides)
no bonus task
12.04.2022Lecture 10: Software and Practical Methodology
(slides)(code)(video link)
13.04.2022 14.04.2022Practice 7: Text classification & Generating image captions using Keras, Project Fair & Project QA
(HW7)(video link session 7)(video link project fair)
no bonus task
19.04.2022Lecture 11: Autoencoders and GANs
(slides)(video link)
20.04.2022 (10:15)Practice 8: Feedback for homework 7(video link)
26.04.2022Lecture 12: Attention and Transformers
(slides)(video link)
27.04.2021Practice 9: Project QA
(video)

03.04.2022Lecture 13: Reinforcement learning
(slides)(code)(video link)
04.04.2022 05.04.2022-
10.05.2022Lecture 14: Deep learning & the Brain
(video)
11.05.2022-
17.05.2022Logistics and QA18.05.2022 19.05.2022-
24.05.2022-25.05.2022 26.05.2022-

NB!: there will be no lecture/practice sessions in the first week, as shown in the table. In the second week, there will be no practice, it will be replaced by a second lecture, for both groups, Thursday at 14:15, accessible here.

  • Arvutiteaduse instituut
  • Loodus- ja täppisteaduste valdkond
  • Tartu Ülikool
Tehniliste probleemide või küsimuste korral kirjuta:

Kursuse sisu ja korralduslike küsimustega pöörduge kursuse korraldajate poole.
Õppematerjalide varalised autoriõigused kuuluvad Tartu Ülikoolile. Õppematerjalide kasutamine on lubatud autoriõiguse seaduses ettenähtud teose vaba kasutamise eesmärkidel ja tingimustel. Õppematerjalide kasutamisel on kasutaja kohustatud viitama õppematerjalide autorile.
Õppematerjalide kasutamine muudel eesmärkidel on lubatud ainult Tartu Ülikooli eelneval kirjalikul nõusolekul.
Tartu Ülikooli arvutiteaduse instituudi kursuste läbiviimist toetavad järgmised programmid:
euroopa sotsiaalfondi logo