Data-Intensive Routing in Spatial Networks

Christian S. Jensen

www.cs.aau.dk/~csj

Center for Data-intensive Systems

Roadmap

- · Setting: big data
- · Road network travel cost modeling and computation
 - Time-varying, uncertain weights
 - Histograms
 - ◆ GMMs
- Routing
 - Stochastic skyline routing
 - Personalized routing
 - Routing based on local-driver behavior
- Closing
 - Demos, the future, challenges, acknowledgments, readings

Setting: Big Data

Hype or Substance?

- We have been pushing the boundaries for decades
 - How much data we can handle
 - How fast
 - Data integration
- Examples
 - VLDB: International Conference on Very Large Database
 - TODS: ACM Transactions on Database Systems
- · So is it all hype?
 - No

Instrumentation and Digitization

- Instrumentation of reality
 - Notably, smartphones
- Digitization of processes
 - E.g., e-commerce, public services, communications, social interactions

2005 vs. 2013

Big Data

Every day, we create 2.5 quintillion bytes of data — so much that 90% of the data in the world today has been created in the last two years alone. This data comes from everywhere: sensors used to gather climate information, posts to social media sites, digital pictures and videos, purchase transaction records, and cell phone GPS signals to name a few. This data is big data.

http://www-01.ibm.com/software/data/bigdata/

Big Data Synthesis

- · The result is new opportunity.
- Lots of data and unprecedented computing infrastructure combine to offer potentials for value creation from data.
- To be competitive, society and businesses must be able to create value from data.
- Data-based decisions and data-driven processes
 - Decisions based on good data beat decisions based on feelings or opinions.
- · A finer granularity of services
- · Entirely new services

Big Data in Routing

Motivation ITS

- A safer, greener, and more efficient and cost-effective transportation infrastructure
- Congestion, greater Copenhagen region
 - ~10 billion DKK/year (2004)
- Bad setting of signalized intersections in Denmark
 - ~9,3 billion DKK/year (2012)

Motivation - Eco-Routing

- The transportation sector is the second largest greenhouse gas (GHG) emitting sector and also causes substantial pollution.
 - every day, worldwide.
- The reduction of greenhouse gas (GHG) emissions from transportation is essential to combat global climate change.
 - EU: reduce GHG emissions by 30% by 2020.
 - G8: a 50% GHG reduction by 2050.
 - China: a 17% GHG reduction by 2015.
- Eco-routing can reduce vehicular impact by up to 20%.
- General context: Smart City

Motivation Eco-Weights

- The capture of the environmental costs of traversing road network edges is key to eco-routing.
 - Eco-weights are uncertain.
 - Eco-weights are time-dependent.

Time-Varying Uncertain Eco-Weights

Outline

- Approach I histograms
 - Setting
 - Framework
 - ERN building
 - GHG emissions estimation
- · Approach II GMMs
 - Setting
 - MTUG building
 - Cost estimation

Setting

- Eco Road Network G = (V, E, F)
 - V: Vertex set. Each vertex indicates a road intersection.
 - E: Edge set. Each edge indicates a road segment.
 - Function F assigns a time-dependent, uncertain eco-weight to each edge in E.
- Input
 - A set of map-matched trajectories TR.
 - An accompanying road network G' = (V, E, Null).
- Output
 - The Eco Road Network G = (V, E, F).

Framework

- Time-dependent uncertain histograms.
 - A vector of (period, histogram) tuples <T_i, H_i>.
 - H_i is the histogram describing the distribution of cost values observed in period T_i

- · Used to represent the eco-weights of road network edges
- Two types of compression are applied to reduce the storage space while retaining acceptable accuracy.

Framework

Traversal Record Analysis

- GPS records are map-matched to the corresponding edges.
- Map-matched records are transformed into traversal records.
 - A traversal record r = (e, t, tt, ge) indicates that edge e is traversed by a trajectory trj starting at time t and has travel time tt and GHG emissions ge.
 - The VT-micro environmental impact model is used to estimate the GHG emissions of each traversal record.

Initial Histogram Building

- · Each edge is associated with a set of traversal records
- · Divide the time space into intervals with equal width
 - The default value is 1 hour, (24 intervals in total).
- For each edge e
 - Build equi-width histograms for each time interval.
 - The number of buckets per time interval is configurable.
 - The histograms are isomorphic.

Histogram Merging

- For each edge, merge two temporally adjacent histograms if they are sufficiently similar.
- Use cosine similarity to quantify similarity.

$$sim(H_i, H_j) = \frac{V(H_i) \square V(H_j)}{\|V(H_i)\| \square \|V(H_j)\|}$$

 We use a merge threshold T_{merge} to decide when to stop merging.

Histogram Bucket Reduction

- Further reduce the storage size of an individual histogram by merging adjacent buckets.
 - Use SSE to measure the merge cost (accuracy loss).
 - Merge buckets when the cost does not exceed threshold T_{red}.
 - Iteratively merge adjacent buckets in all the histograms of a road segment.

Route Cost Estimation

- · For a route
 - Estimate the distribution of GHG emissions as a histogram.
 - Aggregate the histograms of the edges in the route.
- Given two histograms H_1 and H_2 for adjacent edges
 - A histogram H' is computed that represents the aggregated GHG emissions distribution for traversing both edges.

$$H' = H_1 + H_2$$

Outline

- Approach I histograms
 - Setting
 - Framework
 - ERN building
 - GHG emissions estimation
- Approach II GMMs
 - Setting
 - MTUG building
 - Cost estimation

Road Network Model

- MTUG: Multi-cost, Time-dependent, Uncertain Graph
- Assume N different costs of interest
 - Distance (DI), travel time (TT), GHG emissions (GE)
- G = (V, E, MM, W)
 - V is the vertex set, and E is the edge set.
 - **MM** = <MM⁽¹⁾ (N
 - Function MM⁽ⁱ⁾ maps an edge to the minimum and maximum i-th cost of using the edge.
 - ◆ MM^(TT) (e_a) = (150 seconds, 500 seconds)
 - ♦ MM^(GE) (e_b) = (10 ml, 85 ml)
 - $W = \langle W^{(1)} W^{(N)} \rangle$
 - Function W⁽ⁱ⁾ maps an edge to a set of (interval, random variable) pairs of the i-th cost type.
 - $\bullet \ \ W^{(TT)}(e_a) = \{([0:00,\,7:15),\,N(300,\,120)),\,([7:15,\,8:45),\,N(450,\,100)),\,$
 - $\bullet \ \mathsf{W}^{(\mathsf{GE})}\left(\mathsf{e}_{\mathsf{b}}\right) = \{([0.00,\,7.00),\,\mathsf{N}(30,\,100)),\,([7.00,\,9.00),\,\mathsf{N}(50,\,80)),\,\ldots\}$

Instantiation of MM in an MTUG

- MM and W are instantiated using GPS records.
- · GPS records are map matched to edges.
- Each edge is associated with a set of *traversal records* of the form (e, t, **C**).
 - An edge record indicates that a traversal on edge e at time t takes costs C, where C is a vector of all costs of interest.
 - (e₁, 8:08, <55 seconds, 80 ml>)
 - (e₁, 9:18, < 45 seconds , 63 ml>)
 - (e₁, 10:10, < 43 seconds , 60 ml>)
 - (e₁, 21:03, < 45 seconds , 62 ml>)
- Based on the edge records on an edge, functions MM on the edge can be instantiated.
 - MM^(TT) (e₁) = (43 seconds, 55 seconds)
 - MM^(GE) (e₁) = (60 ml, 80 ml)

Instantiation of W in an MTUG

- · Partition a day into 96 15-min intervals.
- For each (edge, interval) pair, we obtain a multi-set containing the costs on the edge during the interval.
 - ms={(10 s, 3), (20 s, 10), (25 s, 20), (30 s, 10), (40 s,
- Estimate a random variable (RV) based on the multi-set.
 - Use a Gaussian Mixture Model (GMM) to represent an RV.
 - GMMs can approximate arbitrary distributions.
 - A GMM is a weighted sum of K Gaussian distributions.

Instantiation of **W** in an MTUG (cont.)

- If two RVs in two adjacent intervals are similar, we combine the two intervals into a long interval.
 - Use KL-divergence to measure the similarity between two RVs.
- Re-estimate a new RV for the long interval using the costs in the long interval.
- The whole procedure works iteratively until no RVs from consecutive intervals are similar enough to be combined.
- · The long intervals along with their RVs instantiate W.

Route Costs in MTUG

- Given a route $R_i = \langle r_1, r_2, ..., r_X \rangle$, where r_i E is an edge.
- RC(R_i, t) indicates the costs of using route R_i at time t
 - RC(R_i, t) = <RV_{DI}, RV_{TT}, RV_{GE}> is a vector of RVs, and each RV corresponds to a travel cost.
- RV_{DI} is a deterministic value, which equals to the sum of the length of each edge in route R_i.
- RV_{TT} is the convolution of the corresponding travel time RV of each edge in route R_i.
 - $\,\blacksquare\,$ Deciding the travel time RV of the first edge r_1 is dependent on the trip start time t.
 - \blacksquare Deciding the travel time RV of the k-th edge r_k is dependent on the travel time of the previous k-1 edges, which may be uncertain.
- RV_{GE} is the convolution of the corresponding GHG emission RV of each edge in route R_i.

Stochastic Skyline Route Planning Under Time-Varying Uncertainty

Deterministic Skyline Routes

- Route cost: cost(R_i) = <DI, TT, GE>
 - A vector of deterministic values.
 - Each value corresponds to a travel cost.
- Dominance relationship
 - R_i dominates R_j iff all the costs of R_i are no greater than those of R_j, and there is at lest one cost of R_i is smaller than that of R_i.
- Consider multiple routes for the same source-destination.
 - R₁: 3.5 km, 230 mg, 10 min;
 - R₂: 5.1 km, 250 mg, 11 min;
 - R₃: 5.1 km, 200 mg, 12 min;
- · The skyline routes are the non-dominated routes.
 - Since R₂ is dominated by R₁, R₁ and R₃ are the skyline routes.

Stochastic Dominance

- Route cost: RC(R_i) = <RV_{DI}, RV_{TT}, RV_{GE}>
 - A vector of random variables (RVs), where each RV represents the distribution of a travel cost.
- Stochastic Dominance between two RVs
 - Given two RVs X and Y, if cdf_X(a) >= cdf_Y(a), for all possible value a in R*, we say "X stochastically dominates Y

- Cost(R₁).RV_{TT} stochastically dominates Cost(R₂). RV_{TT}.
- No stochastic dominance between $Cost(R_3).$ RV_{TT} and $Cost(R_4).$ $RV_{TT}.$

Stochastic Skyline Routes

- Dominance between two routes R_i and R_i
 - If each RV of cost(R_i) stochastically dominates the corresponding RV of cost(R_j), then R_i dominates R_i.
- Stochastic skyline routes
 - Given a source-destination pair and a trip starting time
 - The stochastic skyline routes are the routes that are not dominated by any other routes.

Example Result

- Skyline routes R1, R2, and R3, identified by our algorithm
- R1: 94,849 m; R2: 106,216 m; R3: 91,382 m;
 - DI: R3 dominates R1 and R2.

- TT: R1 dominates R2 and R3.
- GE: R2 dominates R1 and R3.

Framework ---- Offline Phase ---- Online Phase ---- Source, Destination, Time Pre-Processing Cost Records Instantiating MM and W MTUG MTUG

Stochastic Skyline Route Planning

- A brute force method
 - Enumerate all possible routes, compute the route costs, and check whether one route dominates another
 - Very inefficient, and works only for small road networks
- · An efficient method
 - Prune some routes that cannot become skyline routes early
 - Efficient stochastic dominance checking

Early Pruning Strategy

- Do the following for all travel cost types of interest.
 - We use travel time as an example.
 - We maintain a graph where each edge is associated with the minimum travel time, which is recorded in MM.
 - From the destination, run algorithm on the graph.
 - As each vertex is associated with the minimum travel time, we get the
 - route as a candidate Skyline route.

Early Pruning Strategy (cont.)

- Explore routes from source, until no more routes can be explored.
 - Estimate the least possible travel costs for a partially explored
 - If the partially explored route with its estimated least possible costs is dominated by an existing candidate skyline route, there is no need to explore the route any further.
 - Otherwise, continue exploring.
 - Update candidate skyline route if necessary.

Stochastic Dominance Checking

- Naïve approach: check according to the definition of stochastic dominance.
 - For each value a, check whether $cdf_X(a) >= cdf_Y(a)$
- · An efficient approach
 - Consider one cost type at a time
 - Compute the minimum and maximum possible travel costs of a route
- Distinguish among three cases based on the min and max travel costs of two routes
 - Disjoint case: dominance

Stochastic Dominance Checking (cont.)

· Covered case: non-dominance

- Overlapping case (needs further checking)
 - Both dominance and none-dominance may occur

Summary

- Described a framework that enables stochastic skyline route planning in road networks with multiple, timedependent, and uncertain travel costs.
- · Enables eco-routing in a realistic setting.

Personalized Routing

Center for Data-intensive Systems

Personalized Routing

- Different drivers may take different routes because they may have quite different preferences.
- The same drivers may take different routes in different contexts.
 - Morning: try to save time to avoid being late.
 - Weekend afternoon: try to save fuel consumption.
- Challenges
 - Identify contexts for drivers and identify driving preference in each context.
 - Deal with time-dependent uncertain travel costs, e.g., travel time and fuel consumption, while considering individual drivers' driving behaviors, e.g., aggressive vs. moderate driving.

Example Results

- Dark, bold routes: actual routes used by drivers.
- Red routes: shortest routes.
- Green routes: fastest routes.
- Blue routes: predicted routes using the identified contexts and driving preferences.

Vehicle Routing with User-Generated Trajectory Data

Introduction

- · Local travel
 - Knowledge of the surroundings
 - Follow familiar routes
- · Travel in unfamiliar surroundings to unknown destinations
 - Depend on available routing services
 - Expect that the provided route is the best
- Idea: Use GPS data to let those who travel in unfamiliar surroundings benefit from the insights of local travelers

Goal of the Study

- Propose a routing framework that
 - Utilizes GPS data volunteered by local drivers
 - Exploits possibly hard-to-formalize insight into local conditions
 - Takes into account temporal variation in driver behavior
 - Recommends routes based on popularity and temporal aspects
- Evaluate the quality of proposed routes
 - Study based on trip length and pre-selected drivers
 - Quality comparison with existing routing service and route recommendation approaches

Data Preparation Methodology

 Trips that follow the same sequence of road segments are grouped into route usage objects.

• Route r_2 is taken by users u_2 and u_4 3 and 5 times during peak hours and 5 and 6 times during off-peak hours.

$$(r_2, pl, \{(peak, \{(u_2, 3), (u_4, 5)\}), (off, \{(u_2, 5), (u_4, 6)\})\})$$

Scoring of Routes

Preferred routes

- Popular among drivers
- Taken by many distinct drivers
- Popular on the time of the day and day of the week of the query

Scoring of Routes

Route preference value:

$$pref(r) = \alpha \cdot users(r) + (1 - \alpha) \cdot traversals(r)$$
 # distinct drivers taking the route # of traversals of the route

Final route score:

$$(r) = \beta \cdot pref^{M}(r) + (1-\beta) \cdot pref^{N}(r)$$
 Considers trips taken during the query temporal pattern
$$(r) = \beta \cdot pref^{M}(r) + (1-\beta) \cdot pref^{N}(r)$$

Empirical Study: Data

- Monitoring period: 2 years
- · Number of drivers: 285
- Number of GPS points (raw data): ~182,700,000
- Number of trips: ~275,000

•

Routing Quality Evaluation: Data

For this study, we randomly selected equal amounts of trips for different trip length intervals

Routing Quality: Match

Routing Quality Evaluation: Results Unmatched Unmatched Matched Matched 100 100 80 80 60 60 % % 40 40 20 20 0 10-20 20-350 length (km) 20-350 10-20 length (km) Google Directions API (top-1) Our Proposal 100 80 60 % 40 20 10-20 20-350 length (km)

Routing Quality Evaluation: Data

For this study, we considered the five drivers with the most trips.

Routing Quality Evaluation: Results

Our proposal

100
80
40
20
1 2 3 4 5

Google Directions API (top-1)

Related Work

- Four existing routing techniques use [1],[2],[3],[4]
 - The road network is formed from the road segments that are covered by the trajectory data set
 - A route is formed by
 - Prioritizing parts of roads that are followed the most by a specific driver (personalized routes) [1]
 - Prioritizing parts of roads that are taken by other drivers [2],[4]
 - Possibly using sub-routes from multiple routes [3]
 - Trajectories used for scoring must contain the destination and must start and end during the provided time interval. [3]
 - Suggested routes are formed from the most popular routes or route parts in the available data set.

[1] K.-P. Chang, L.-Y. Wei, M.-Y. Yeh, and W.-C. Peng. Discovering personalized routes from trajectories. LBSN 2011, pp. 33—40 [2] Z. Chen, H. T. Shen, and X. Zhou. Discovering popular routes from trajectories. ICDE 2011, pp. 900–911 [3] W. Lou. H. Tan, L. Chen, and L.M. Ni. Finding time period-based most frequent path in big trajectory data. In SIGMOD 2013, pp. 713–724

14] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang. T-Drive: Driving directions based on taxi trajectories. In GIS 2010, pp. 99–108

Conclusion and Research Directions

Conclusions

- The proposed framework utilizes trajectory data collected from local drivers for routing.
- A preferred route is selected using a flexible scoring function that considers
 - The number of traversals of the route
 - The number of distinct drivers taking the route
 - The time periods when the traversals occurred
- · Use of travel histories of local drivers can increase routing quality
- · More details in the paper!

Research directions

- Additional aspects of the framework can be considered
 - Efficiency of route identification process (LCSS technique)
 - Inclusion of personalized routes
 - Better support for routes that are constructed from sub-routes

Closing

System of Sensors Model

- The setting may be modeled as a system of (logical) streams, one per edge.
 - Data is emitted from the stream of an edge when a vehicle traverses the edge
 - Spatial
 - Spatio-temporally correlated
 - Sparse
- · Real, unlike early, envisioned smart dust applications!

Demos and Prototype Systems

- EcoTour: http://daisy.aau.dk/its/
 - Computes and compares the shortest, the fastest, and the most eco-friendly routes for arbitrary source-destination pairs in DK.
 - Best demo award at IEEE MDM 2013.
- EcoSky: http://daisy.aau.dk/its/eco/
 - Supports skyline eco-routing and personalized eco-routing
- Sheafs: http://daisy.aau.dk/its/sheaf
 - Trajectory based traffic sheafs
- Strict-Path Queries: http://daisy.aau.dk/its/spqdemo
 - Trajectory based, Strict-Path Queries
 - Trips (historical travel-time), route choice, Napoleon (road usage)
- iPark: identifying parking spaces from GPS trajectories
 - On-street parking lanes vs. parking zones

The Future

- Much more travel data
 - GPS data from vehicles
 - Inductive loop detectors, Wi-Fi/Bluetooth
 - Collective transport data, e.g., bus data,
 - Multimodal collective transport data, e.g., "Rejsekortet
- · Much more connected vehicles
- New services
 - Routing
 - Safety and warnings
 - Parking, fees, insurance, road pricing
 - Car sharing, multi-modality
- Self-driving vehicles

Challenges, Examples

- •
- Modeling spatio-temporal congestion from data
- Characterize the effects of events
 - Accidents, malfunctioning of traffic signals, rain, a concert
- · Real-time traffic management
 - In response to current or predicted situation, actuate traffic signals and drivers (via their smartphones or navigation devices) to optimize the use of the infrastructure and driver experience
- Automated trade-off between weight level of detail and available data.
- · Stochastic routing at 20 milliseconds.
- Integrate with "point" data.

Acknowledgments

- Colleagues at Aalborg University, Aarhus University, and beyond.
- The EU FP7 project, Reduction: http://www.reduction-project.eu/
- The Obel Family Foundation: http://www.obel.com/en

Readings

- V. Ceikute, C. S. Jensen: Vehicle Routing with User-Generated Trajectory Data. MDM (1) 2015
- C. Guo, B. Yang, O. Andersen, C. S. Jensen, K. Torp: EcoMark 2.0: empowering eco-routing with vehicular environmental models and actual vehicle fuel consumption data. GeoInformatica 19(3):567-599 (2015)
- C. Guo, Bin Y., O. Andersen, C. S. Jensen, K. Torp: EcoSky: Reducing vehicular environmental impact through eco-routing. ICDE 2015:1412-1415
- B. Yang, C. Guo, Y. Ma, C. S. Jensen: Toward personalized, contextaware routing. VLDB J. 24(2):297-318 (2015)
- Y. Ma, B. Yang, C. S. Jensen: Enabling Time-Dependent Uncertain Eco-Weights For Road Networks. GeoRich@SIGMOD 2014:1:1-1:6
- B. Yang, C. Guo, C. S. Jensen, M. Kaul, S. Shang: Stochastic skyline route planning under time-varying uncertainty. ICDE 2014:136-147
- B.- Yang, M. Kaul, C. S. Jensen: Using Incomplete Information for Complete Weight Annotation of Road Networks. IEEE TKDE 26(5):1267-1279 (2014)

Readings

- C. Guo, C. S. Jensen, B. Yang: Towards Total Traffic Awareness. SIGMOD Record 43(3):18-23 (2014)
- V. Ceikute, C. S. Jensen: Routing Service Quality Local Driver Behavior Versus Routing Services. MDM (1) 2013: 97-106
- M. Kaul, B. Yang, C. S. Jensen: Building Accurate 3D Spatial Networks to Enable Next Generation Intelligent Transportation Systems. MDM 2013: 137-146, best paper award.
- Ove Andersen, Christian S. Jensen, Kristian Torp, Bin Yang: EcoTour: Reducing the Environmental Footprint of Vehicles Using Eco-routes. MDM 2013: 338-340, Demo paper, best demo award.
- B. Yang, C. Guo, C. S. Jensen: Travel Cost Inference from Sparse, Spatio-Temporally Correlated Time Series Using Markov Models. PVLDB 6(9): 769-780 (2013)
- C. Guo, Y. Ma, B. Yang, C. S. Jensen, Manohar Kaul: EcoMark: evaluating models of vehicular environmental impact. SIGSPATIAL/GIS 2012: 269-278