The Web Is (Mostly) Mobile

- A quickly evolving mobile Internet infrastructure.
 - Mobile devices, e.g., smartphones, tablets, laptops, navigation devices
 - Communication networks and users with access
- Rapidly increasing device sales (millions)
- Mobile is a mega trend.
 - Google went “mobile first” in 2013.
 - Mobile data traffic 2020 = mobile data traffic 2010 x 1000

Mobile Is Spatial

- Increasingly sophisticated technologies enable the accurate geo-positioning of mobile users.
 - GPS-based technologies
 - Positioning based on Wi-Fi and other communication networks
 - New technologies are underway (e.g., GNSSs and indoor).

Outline

- Background and motivation
- Top-k spatial keyword queries
- Continuous top-k queries
- Accounting for co-location
- Aggregate queries, including collective and group queries
- Summary and challenges

(Acknowledgments and references are given at the end.)

Spatial Web Querying

- Total web queries
 - Google: 2011 daily average: 4.7 billion (uncertain)
- Queries with local intent
 - Google: ~20% of desktop queries
 - Bing: 50% of mobile queries
- Vision: Improve web querying by exploiting accurate user and content geo-location
 - Smartphone users issue keyword-based queries
 - The queries concern websites for places
- Balance spatial proximity and textual relevance
- Support different use cases

Spatial Web Objects

- Objects: \(p = (\lambda, \psi) \) (location, text description)
- Example:

\[
\lambda = (56.158889, 10.191667)
\]

\(\psi \) = Den Gamle By Open-Air Museum

Den Gamle By, "The Old Town" was founded in 1909 as the world’s first open-air museum of urban history and culture.
Spatial Web Objects — Sources

- Web pages with location
- Online business directories
 - Business name, location, categories, reviews, etc.
 - Example: Google Places
- Geocoded micro-blog posts
 - Example: Twitter
 - Messages with up to 140 characters.

Top-k spatial keyword querying

Top-k Spatial Keyword Query

- Objects: \(p = \{l, d\} \) (location, text description)
- Query: \(q = \{l, k\} \) (location, keywords, # of objects)

Ranking function

\[
rank(p) = \alpha \frac{\|q \cdot p\|_2}{\max D} + (1-\alpha)(1 - \frac{tr(p|q)}{\max P})
\]

- Distance: \(\|q \cdot p\|_2 \)
- Text relevancy: \(tr(p|q) \)
 - Probability of generating the keywords in the query from the language models of the documents

- Generalizes the kNN query and text retrieval

Spatial Keyword Query Processing

- How do we process spatial keyword queries efficiently?

Proposal

- Prune both spatially and textually in an integrated fashion
- Apply indexing to accomplish this

The IR-tree [Cong et al. 2009; Li et al. 2011; Wu et al. 2012]

- Combines the R-tree with inverted files
- R-tree: good for spatial
- Inverted files: good for text
Why Not Top-k Spatial Keyword Query I

$$f(q,p) = \alpha (1 - SDist(p,q)) + (1 - \alpha) TSim(q,p)$$

- Top-2 “clean/comfortable” hotels near COEX
 - Rank 1: Intercontinental
 - Rank 2: Oakwood
- Rank 3: Park Hyatt (not returned)

Refined query:
- Use larger k?
- Set k to 3 or larger
- Modify both $$\alpha$$ & k?

<table>
<thead>
<tr>
<th></th>
<th>1-SDist()</th>
<th>TSim()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercontinental</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Oakwood</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>Park Hyatt</td>
<td>0.3</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Why Not Top-k Spatial Keyword Query II

- Top-2 “Clean, Comfortable” hotels near Conference Venue:
 - Rank 1: Holiday Inn
 - Rank 2: Omena Hotel
 - Rank 3: Raddison Blu (not returned)

Refined query:
- Use a larger k?
- User other query keywords?
- Query with “Clean, Comfortable, Luxury”
- Modify both $$k$$ & $$\alpha$$?

Continuous Spatial Keyword Queries

- Objects: $$p = \langle z, y \rangle$$ (location and text description)
- Query: $$q = \langle z, y, k \rangle$$ (location, keywords, # of objects)
- A continuous query where argument $$z$$ changes continuously

- Ranking function

$$rank_q(p) = \frac{||q \cdot z, p \cdot z||}{Tr_q(p,y)}$$

- Euclidean distance (changes continuously)
- Text relevancy (query dependent)
Continuous Spatial Keyword Queries

- How can we process such queries efficiently?
 - Server-side computation cost
 - Client-server communication cost

- While the argument changes continuously, the result changes only discretely.
 - Do computation only when the result may have changed

- Use safe zones
 - When the user remains within the zone, the result does not change.
 - The user requests a new result when about to exit the safe zone.

Processing Continuous Queries

- Compute results
 - As before...

- Compute corresponding safe zones
 - Integrate with result computation
 - Prune objects that do not contribute to the safe zone without inspecting them
 - Use the IR-tree
 - Access objects in border-distance order
 - Prune sub-trees
 - Terminate safely when a stopping criterion is met

Representation of a Multiplicatively Weighted Voronoi Cell

Influence Objects

$I^+ \cup I^- \cup I^-$
Pruning Objects p_3 with Higher Weights

$$\exists p' \in I \left(C_{p_3, p'} \not\supseteq C_{p, p'} \right)$$

Pruning Objects with Equal Weights

$$\exists p' \in I \left(\bot_{p, p'} \supseteq C_{p, p'} \right)$$

$$\exists p' \in I \left(\bot_{p, p'} \supseteq \bot_{p', p'} \right)$$

Pruning Objects with Lower Weights

$$\exists p' \in I \left(C_{p, p'} \cap C_{p', p'} = \emptyset \right)$$

$$\exists p' \in I \left(C_{p, p'} \subseteq C_{p', p'} \right)$$

$$\exists p' \in I \left(C_{p, p'} \cap \bot_{p', p'} = \emptyset \right)$$

Accounting for Co-Location

- So far, we have considered data objects as independent, but they are not.

- It is common that similar places co-locate.
 - Markets with many similar stands
 - Shopping centers, districts
 - Shopping malls, malls, mall, mall...
 - Restaurant and bar districts
 - Car dealerships

- How can we capture and take into account the apparent benefits of co-location?

Prestige-based ranking
Top-k Spatial Keyword Query

- Objects: \(p = \{ \langle \lambda, \psi \rangle \} \) (location, text description)
- Query: \(q = \{ \langle \lambda, \psi, k \rangle \} \) (location, keywords, # of objects)

Ranking function

\[
pr_{rank}(p) = \alpha \frac{\| q, \lambda, p, \lambda \|}{\max D} + (1-\alpha)(1 - pr_{\psi}(p, \psi))
\]

- Distance: \(\| q, \lambda, p, \lambda \| \)
- Text relevancy: \(pr_{\psi}(p, \psi) \)
 - PR score: prestige-based text relevancy (normalized)

Standard Retrieval Approach

Prestige-Based Retrieval

- Prestige propagation using a graph \(G = (V, E, W) \)
 - Vertices \(V \): spatial web objects
 - Edges \(E \): connect objects that meet constraints
 - Distance threshold: \(\| p, \lambda, p, \lambda \| \leq \delta \)
 - Similarity threshold: \(\| \text{sim}(p, \psi, p, \psi) \| \leq \varepsilon \) (vector space model)
 - Edge weights \(W \): \(\| p, \lambda, p, \lambda \| \)
- Use Personalized PageRank for ranking \cite{JehWidom2003}

Prestige-Based Ranking

- Local experts are asked to provide query keywords for locations and then to evaluate the results of the resulting queries.
- The studies suggest that the approach is able to produce better results than is the baseline without score propagation.

Experimental Study
Digression: Methodology

- The same underlying methodology underlies the studies covered.
- Define precisely a problem of perceived real-world interest.
- Develop solutions
 - Concepts, data structures, algorithms
- Carry out mathematical analyses
 - Correctness, complexity, storage size
- Prototype the solutions and perform empirical studies
 - Often, real data is needed
 - Offers detailed insight in the design properties of the solutions
- Iterate!

Aggregate Spatial Keyword Querying

- So far, the granularity of a result has been a single object.
- We may want to return sets of objects that collectively satisfy a query.

 - Aggregate queries
 - Find a set of objects that collectively satisfy the query
 - Aggregate the result documents into a single document
 - Apply spatial proximity conditions to the result objects internally and with respect to the query

 - Top-k groups queries
 - Find groups of objects that satisfy the query
 - Each object in a group is relevant to the keywords
 - Apply spatial proximity conditions to the result objects internally and with respect to the query

Collective Spatial Keyword Querying

- The spatial aspect offers natural ways of aggregating data objects and providing aggregate query results.

 - We may want to return sets of objects that collectively satisfy a query.
The Collective Spatial Keyword Query

- Query location: 🌟
- Query keywords: theater, gym

Collective Query Variants

- Type 1: cost function:
 \[\text{Cost}(Q, \mathcal{Y}) = \sum_{o \in \mathcal{Y}} \text{Dist}(o, Q) \]

 - Application scenario
 - The user wishes to visit the places one by one while returning to the query location in-between.
 - Go to the hotel between the museum visit and the jazz concert
 - NP-hard: proof by reduction from the Weighted Set Cover problem

- Type 2: Cost function:
 \[\text{Cost}(Q, \mathcal{Y}) = \max_{o \in \mathcal{Y}} \text{Dist}(o, Q) + \max_{q \in \mathcal{Y}} \text{Dist}(o, o) \]

 - Application scenario
 - Visit places without returning to the query location in-between
 - E.g., go to a movie and then dinner
 - NP-hard: proof from reduction from the 3-SAT problem

Approximation Algorithm - T1A1

- Exploit existing well known greedy algorithm
 - Partial query \(q \): the unmatched part of the query keywords \(Q \).

Exact Algorithm Without an Index - T1E1

- Aim: Develop an exact algorithm with a running time that is exponential in the number of query keywords, not the number of objects.
 - The number of query keywords is small.

The Collective Spatial Keyword Query

- Objects: \(o = \{ o_1, o_2, o_3, o_4 \} \) (location and text description)
- Query: \(Q = \{ t_1, t_2, t_3 \} \) (location and keywords)

- The result is a group of objects \(\mathcal{Y} \) satisfying two conditions.
 - \(Q \mathcal{Y} \subseteq \bigcup_{o \in \mathcal{Y}} \text{Dist}(o, Q) \)
 - \(\text{Cost}(Q, \mathcal{Y}) \) is minimized.

- \(\text{Cost}(Q, \mathcal{Y}) = \alpha C_1(\mathcal{Y}) + (1 -\alpha) C_2(\mathcal{Y}) \)
 - \(C_1(\mathcal{Y}) \) depends on the distances of the objects in \(\mathcal{Y} \) to \(Q \)
 - \(C_2(\mathcal{Y}) \) characterizes the inter-object distances among objects in \(\mathcal{Y} \)
 - \(\alpha \) balances the weights of the two components.

Table:

<table>
<thead>
<tr>
<th>Object</th>
<th>Words</th>
<th>Dist(o, Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>o1</td>
<td>t1, t2</td>
<td>1.4</td>
</tr>
<tr>
<td>o2</td>
<td>t1, t3</td>
<td>2.8</td>
</tr>
<tr>
<td>o3</td>
<td>t1, t3</td>
<td>3</td>
</tr>
<tr>
<td>o4</td>
<td>t1, t3</td>
<td>3.2</td>
</tr>
<tr>
<td>o5</td>
<td>t2, t3</td>
<td>4.5</td>
</tr>
<tr>
<td>o6</td>
<td>t2, t3</td>
<td>8</td>
</tr>
<tr>
<td>o7</td>
<td>t2, t3</td>
<td>9</td>
</tr>
<tr>
<td>o8</td>
<td>t1, t3</td>
<td>8</td>
</tr>
</tbody>
</table>

Figure:

- Objects: \(o_1, o_2, o_3, o_4 \)
- Query: \(t_1, t_2, t_3 \)

Table:

<table>
<thead>
<tr>
<th>Partition</th>
<th>Objects</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1, t2, t3</td>
<td>αnull</td>
<td>6.2</td>
</tr>
</tbody>
</table>

Figure:

- Partition \(t_1, t_2, t_3 \) for the query \(t_1, t_2, t_3 \)
- Costs: \(\alpha o_2 + o_3 \)
Approximation Algorithm 1 – T2A1

- For each query keyword, find the nearest object covering it using an IR-tree. The group of these object serve as the result set.

\[Q^Q = \{t_1, t_3, t_5\} \]

\[\text{Cost}(q, \tilde{q}) = \text{Dist}(o_q, q) + \text{Dist}(o_q, o_k) \]

Approximation Algorithm 2 – T2A2

- Utilize the first approximation algorithm:

For each object \(o_k \) containing \(t_q \), issue a new query \(q_{new} = \{o_k, Q^Q\} \) and call T2A1.

Finally we select the group with the smallest cost.

Repeat until we reach an object further than the current cost value.

Top-k Groups Query

- Objects: \(p = \{q, \tilde{q}\} \) (location, text description)
- Query: \(q = \{q, \tilde{q}; k\} \) (location, keywords, # of objects)
- Ranking function

\[\text{rank}_k(G) = \alpha \left(1 - \beta \right) \frac{\text{dist}(q, \tilde{q}, G) + (1 - \beta) \text{diam}(G)}{\max D} + (1 - \alpha) \text{TR}_c(q; \tilde{q}, G) \]

- \(0 \leq \alpha, \beta \leq 1 \)
- Distance: \(\text{dist}(q, \tilde{q}, G) = \min_{o_k \in G} \| q, o_k, \tilde{q} \| \)
- Diameter: \(\text{diam}(G) = \max_{o_k, o_l \in G} \| o_k, o_l, \tilde{q} \| \)
- The text relevance function favors large groups and groups where the query keywords are distributed evenly among group objects.
- Groups are disjoint
Problem Definition

- **Distance to the group**
 - Distance to the nearest object

- **Group diameter**
 - Maximum distance between two objects

Road Networks

Problem Formalization

- Road network graph G
 - A node represents a road junction point or a location, associated with a set of keywords
 - An edge represents a road segment

- Region R
 - A connected subgraph of G

- Nodes are weighted
 - Relevance to the query
 - Query-independent weights (e.g., popularity or rating) are also possible

Road Networks

Hot Region Query

- $q = (\lambda, q_r, \lambda)$
 - λ: a rectangular query range
 - q_r: keywords
 - λ: a road segment length constraint

- Retrieves the region with largest weight given the length constraint and the query range

- Example: λ = the whole graph, λ = 6

- Result: $<v2, v4, v5, v6>$

Place ranking using GPS records, directions queries
Finding Spatial Web Objects

- Massive volumes of location samples from moving objects are becoming available.
 - GPS location records \((oid, x, y, t)\)
 - Location records based on Wi-Fi and cellular positioning
- How can we utilize this content for identifying spatial web objects?
 - Can be used as a supplement to business directories
 - Potential benefit: more up to date

From GPS Records to Places

- Step 1: Extract stay points from raw trajectories
- Step 2: Cluster stay points with existing algorithms
- Step 3: Sample stay points from clusters, reverse geocode them, and obtain their semantics from yellow pages
- Step 4: Split and merge clusters to obtain semantic locations

Step 1: Extract Stay Points

- Stay: two consecutive records with a time gap larger than some threshold \(t_{th}\) (e.g., 10 minutes)
- Stay point: the first point in a stay (the end point)
- Data set: 76,139 stay points

Step 2: Cluster Stay Points

- Use existing spatial clustering algorithms
 - K-means: 7056 clusters
 - OPTICS: 7088 clusters

Step 3: Sampling, Reverse Geocoding, Semantics

- Randomly sample points from each cluster
- Use the Google Maps API for reverse geocoding
- Use a local yellow pages to get semantics

Step 4: Splitting and Merging

- Splitting
 - Cluster points in a cluster to obtain sub-clusters
 - Split a cluster if it has sub-clusters with different semantics
- Merge two clusters with similarity larger than a threshold
 - Similarity: consider user lists, semantics lists, average entry times, average stay durations

- Cannot merge with others; becomes a new cluster
- These merge to form a new cluster
Experimental Study

- **Data**
 - Collection: 119 users in the period 01/01/2007 ~ 31/03/2008
 - Sampling: 1Hz
 - Records: 105,329,114

- **Step 1**
 - Stay point extraction: 76,139

- **Steps 2-4**
 - Clustering and cluster refinement: ~6,500

- **Clustering metrics**:
 - Purity
 - Entropy
 - NMI

GPS-Based Place Ranking

- **Step 5**
 - Ranking metrics: Precision@n, MAP, nDCG, Runtime

- **Exploit different aspects of the location records**
 - The more visits, the more significant
 - The longer the durations of visits, the more significant
 - The more distinct visitors, the more significant
 - The longer the distances traveled to visit, the more significant
 - The more "near-by" significant places are, the more significant a place is.
 - The more a place is visited by objects that visit significant places, the more significant it is.

Two-Layered Graph

- **G_{UL}**: a link represents a trip between two locations
- **G_{LL}**: a link represents a visit of a user to a location

Results

<table>
<thead>
<tr>
<th></th>
<th>Rank-by-visits</th>
<th>Rank-by-durations</th>
<th>HITS-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP</td>
<td>0.202</td>
<td>0.2126</td>
<td>0.062</td>
</tr>
<tr>
<td>P@20</td>
<td>0.45</td>
<td>0.45</td>
<td>0.1</td>
</tr>
<tr>
<td>P@50</td>
<td>0.36</td>
<td>0.38</td>
<td>0.12</td>
</tr>
<tr>
<td>nDCG@20</td>
<td>0.8261</td>
<td>0.8324</td>
<td>0.065</td>
</tr>
<tr>
<td>nDCG@50</td>
<td>0.7747</td>
<td>0.107</td>
<td></td>
</tr>
<tr>
<td>Runtime (s)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **ST-Unified performs the best**

- **Consider: the stay durations and distances between locations; performs the best.**

- **Exploit both types of links: performs better than $U-L$ and $L-L$.**

- **Considers the stay durations and distances between locations; performs the best.**

- **Treat all users equally, does not capture the experience of users.**

- **Ignores the dependency among locations, does not capture the relationships between locations.**

- **No normalization, locations visited many times by very few users gain too high rankings.**
Directions Query Based Place Ranking

- How can we use directions queries for assigning significance to places?
 - The queries will proliferate as navigation goes online.

- Idea: a query \((x \rightarrow y)\) is a vote that \(y\) is an important place.

- Exploit different aspects of the queries
 - Count-based: The more queries to \(y \in \mathcal{T}\), the more significant \(y\) is \((\mathcal{T})\).
 - Distance-based: The longer the distances \(x \rightarrow y\), the more the more significant \(y\) is.
 - Locality-based: The more queries \(x \rightarrow y\), the more significant \(y\) is for users close to \(x\).

Experimental Study

- Using query logs from Google

- The most obvious competitor is reviews and ratings.

- Similar quality as reviews
- Better coverage than reviews
- Better temporal granularity than reviews
 - Examples of finer temporal granularity: after-work bar, weekday lunch restaurant

Spatio-Textual Similarity Join

- Text Similarity Threshold \(T_{\text{text}}\)
- Spatial Distance Threshold \(T_{\text{distance}}\)
- Objective: Retrieve all pairs of geo-textual objects \((o_i, o_j)\) s.t.
 1. \(\text{TextSim}(o_i, o_j) \geq T_{\text{text}}\)
 2. \(\text{SpatialSim}(o_i, o_j) \leq T_{\text{distance}}\)

Other Functionality

Spatio-Textual Similarity Query

- A query region (rectangle)
- A set of keywords
- Thresholds of text similarity and spatial similarity

More Types of Queries

- Approximate String Search in Spatial Cai et al. ICDE’10
- Top-k Spatial Keyword Queries on Road Networks. Rocha-Junior and Narväg. EDBT’12
- Diversified Spatial Keyword Search On Road Networks. Zhang et al. FDBT’14
- Desks: Direction-Aware Spatial Keyword Search. Liu et al. ICDE’14
- Distributed Spatial Keyword Querying on Road Networks. Luo et al. EDBT’14
- Authentication of Moving Top-k Spatial Keyword Queries. Wu et al. TKDE’16
- Reverse Keyword Search for Spatio-Textual Top-k Queries in Location-Based Services. Lin et al. TKDE’16
- Keyword-Aware Continuous kNN Query on Road Networks. Zheng et al. ICDM’16
- ...

Fan et al.: SEAL: Spatio-Textual Similarity Search, PVLDB 12
Acknowledgments and Readings

Summary

- The web is going mobile and has a spatial dimension.
- Many queries have local intent
- Spatial keyword queries
 - k nearest neighbor queries
 - Continuous k nearest neighbor queries
 - Using nearby relevant content for place ranking
 - Retrieve a set of objects that collectively best satisfy a query
 - Retrieve k sets of objects that best satisfy a query

Next Steps

- Which functionality to serve when?
 - Ex: mineral water, dumplings
 - How can context be used for determining user intent?
- More sophisticated ranking!
 - Which signals to use?
 - How to combine them into a function (e.g., as a sum)?
 - Which weight parameters to use (e.g., a weight for each term)?
 - What is the relevant context for this?
 - Dependence on location
 - Dependence on keywords
 - Dependence on search history
 - Dependence on social network
 - Dependence on time
- Evaluation?
 - Which functionality is best where and when and for who?

Further Steps

- Structured queries and Amazon-style and social queries
 - Ample opportunities for much more customization of results
- Build in feedback mechanisms
 - “Figuring out how to build databases that get better the more people use them is actually the secret source of every Web 2.0 company”

- Avoid parameter overload
 - Problem vs. solution parameters
 - Hard-to-set, impossible-to-set parameters — relevance decreases exponentially with the number of such parameters

Acknowledgments and Readings

Thank you for your attention.

😊