Lecture 3

Applications in Search and Discovery

and the final part,

New Perspectives and New
Approaches

Fionn Murtagh

In summary

We use random projections of our data — of our cloud of
points. When in high dimensions, such projections can even
approximate a projection into a lower dimension
orthonormal space. (This is what we want in PCA or CA,
etc.)

But we have pursued a new objective: to use random
projection in order to approximate our data cloud such that
it is rescaled well. What we mean by that: that its clustering
properties are well respected — the interrelationships among
points in our cloud of points.

In summary

Having rescaled our data, based on random projections, we
next show how we can simplify that mapping of our data
cloud.

Then we want to read off the clusters. We show that the
Baire metric, that is also an ultrametric, is an excellent
framework for this. (The Baire metric, as will be shown, is
the “longest common prefix metric”.)

Applications in Search and Discovery

— First, agglomerative hierarchical clustering; or:
“hierarchical encoding” of data.

— Ultrametric topology, Baire distance.
— Clustering of large data sets.

— Hierarchical clustering via Baire distance
using SDSS (Sloan Digital Sky Survey)
spectroscopic data.

— Hierarchical clustering via Baire distance
using chemical compounds.

Next: the Baire (ultra)metric

Baire, or longest common prefix distance - and also an ultrametric

An example of Baire distance for two numbers (x and y)
using a precision of 3:

Baire distance between xand y:
dz (x, y) = 102

Base () here is 10 (suitable for real

X =0.425
] Feonere= =

y = 0427 That is:
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Declination

On the Baire (ultra)metric Data - sample

— Baire space consists of countable infinite sequences with a metric

defined in terms of the longest common prefix 2% 01z] &EWMG 71X ¢
VITVMRXIH A

RA DEC spec.redshift  phot. redshift

1454339  0.56416792 0.14611299 0.15175095

— The longer the common prefix, the closer a pair of sequences. 14542139 053370196 0.145909 0.17476539
— The Baire distance is an ultrametric distance. It follows that a 145.6607  0.63385916 0.46691701 0.41157582
hierarchy can be used to represent the relationships associated with 145.64568 0.50961215 0.15610801 0.18679948
it. Furthermore the hierarchy can be directly read from a linear 145.73267 0.53404553 0.16425499  0.1958021 |
scan of the data. (Hence: hierarchical hashing scheme.) 145.72943  0.12690687 0.03660919  0.06343859
— We applied the Baire distance to: chemical compounds, spectrometric 145.74324  0.46347806 0.120695 0.13045037

and photometric redshifts from the Sloan Digital Sky Survey (SDSS), and
various other datasets.

® A subset was taken of approximately 0.5 million data ® Motivation - regress z_spect on Z_phOt
points from the SDSS release 5.
o . . . .
Thesve wvere objects with RA jclnd Dec. (Right Ascension .and ® Furthermore: determine gOOd quality
Declination, and spectrometric redshift, and photometric .
redshift). Problem addressed: regress one redshift mappings of Z_spect onto Z_PhOt' and less
(spectro.) on the other (photo.). qOOd quality mappings
® Baire approach used, and compared with k-means.
® 1.2 million chemical compounds, each characterized ® |.e, cluster-wise nearest neighbour
by 1052 boolean presence/absence values. regression
® Random projections used on normalized compound/
attribute values. . .
_ ® Note: cluster-wise not spatially (RA, Dec)
® Baire approach used; also another approach based on but rath ithin the data itself
restricting the precision of the normalized compound/ ut rather within the data itse
attribute values.
SDSS (Sloan Digital Sky Survey) Data Perspective Plots of Digit Distributions

a) RA vs. DEC
e - We took a subset of

345444444

approximately 0.5 million
‘ | data points from the SDSS :
release 5 ’
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- declination (Dec)

~ - right ascension (RA) o
— - spectrometric redshift o o mEom e sown s

- photometric redshift.

100 150 200 250 300 350
Right ascension -  Dec vs RA are shown ® On the left we have z_spec where three data peaks can be

observed. On the right we have z_phot where only one data
peak can be seen.



Framework for Fast Clusterwise Regression

82.8% of z_spec and z_phot have at least 2
common prefix digits.

l.e. numbers of observations sharing 6, 5, 4, 3, 2 decimal digits.

We can find very efficiently where these
82.8% of the astronomical objects are.

21.7% of z_spec and z_phot have at least 3
common prefix digits.

l.e. numbers of observations sharing 6, 5, 4, 3 decimal digits.

Next - another case study, using
chemoinformatics - which is high
dimensional.

Since we are using digits of precision in our
data (re)coding, how do we handle high
dimensions?

Baire Distance Applied to
Chemical Compounds

Matching of Chemical Structures
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Chemoinformatics clustering

1.2 million chemical compounds, each characterized by
1052 boolean presence/absence values.

Firstly we note that precision of measurement leads to
greater ultrametricity (i.e. the data are more hierarchical).

From this we develop an algorithm for finding equivalence
classes of specified precision chemicals. We call this: data
“condensation”.

Secondly, we use random projections of the 1052-
dimensional space in order to find the Baire hierarchy. We
find that clusters derived from this hierarchy are quite similar
to k-means clustering outcomes.



Random projection and hashing

Random ector

In fact random projection here works
as a class of hashing function.

y axis

Hashing is much faster than alternative
methods because it avoids the pairwise
comparisons required for partitioning
and classification.

xaxs

If two points (p, q) are close, they will have a very small |p-q| (Euclidean metric) value;
and they will hash to the same value with high probability; if they are distant, they should
collide with small probability.

Normalize chemical compounds by dividing each row by row
sum (hence “profile” in Correspondence Analysis terms).

Two clustering approaches studied:

Limit precision of compound / attribute values. This has the
effect of more compound values becoming the same for a
given attribute. Through a heuristic (e.g. interval of row sum
values), read off equivalence classes of 0-distance compounds,
with restricted precision. Follow up if required with further
analysis of these crude clusters. We call this “data
condensation”. For 20000 compounds, 1052 attributes, a few
minutes needed in R.

Second approach: use random projections of the high
dimensional data, and then use the Baire distance.
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Summary Remarks on Search and Discovery

We have a new way of inducing a hierarchy on data

First viewpoint: encode the data hierarchically and essentially read off the clusters

Alternative viewpoint: we can cluster information based on the longest common
prefix

- We obtain a hierarchy that can be visualized as a tree

We are hashing, in a hierarchical or multiscale way, our data

We are targeting clustering in massive data sets

The Baire method - we find - offers a fast alternative to k-means and a fortiori to
traditional agglomerative hierarchical clustering

At issue throughout this work: embedding of our data in an ultrametric topology

® Quite a different starting point:

® Using Apache Lucene and Solr for indexing,
storage, and query support

® The following slide is showing where we
used 152,998 cooking recipes, with 101,060
unique words in them.

247 antnbutes, § of tnem shown

»
2

nsacne
Solr
cNeeH)ian
Navigation aid: Lo | mexiean
Cursor ovor o betow or Faciat, 5 ° cake eaftod
e : desserts Hilese
Examgio of quory wound “cake': ¢ salads

xCo0rd{-1.6 T -1

Find:

152998 resus lennd n 8 ms Page 1 61 15300

21" Club Rice Puddng |

From random projection to the Baire
hierarchical clustering

Selection of 10,317 funding proposals, out of set of 34,352, were
indexed in Apache Solr. Their similarities were determined, using
Solr’s MLT (“more like this”) score. (This uses weights for fields in
the proposal documents, and is analogous to a chi squared, or tf-idf-
based similarity.) XJ MKHYQ JVIUYIRG] § MRZIVWI HSGYQIR:

We used a very sparse similarity matrix of dimensions 10317 x 34252.
Through random projection, we obtained a unidimensional scaling of
the 10317 proposals.

In the following the mean of 99 random projections was used.

The projection values were rescaled to the interval 0, 1.

Layer | clusters: the same first digit.

Layer 2 clusters: given the same first digit, having the same second digit.

Layer 3 clusters: given the same first two digits, having the same third
digit.

And so on.

This is a regular 10-way tree.



Abscissa: 10118 documents sorted by random projection value. Ordinate: 8 digits
comprising random projection value.
Layer I: 8 clusters are very evident. Layer 2: there are 87 clusters (maximum is 100). Layer
3: here 671 clusters (maximum is 1000).
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Objects 1:10118

Low dimensional goodness of fit to our data,
versus linear rescaling

Conventional use of random projections:

Project data into lower dimension subspace, of dimension
> 1.

Aim is to have proximity relations respected in the low
dimensional fit to the high dimensional cloud of points.

In the work presented here, we seek a consensus one-

dimensional mapping of the data, that represents relative
proximity.

Two following slides: Our aim is relative clustering properties. Cf. the now conventional use of
the Johnson-Lindenstrauss lemma.
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F. Critchley and W. Heiser, “Hierarchical trees can be perfectly scaled
in one dimension", Journal of Classification, 5, 5-20, 1988.

Reduced dimensionality: k << d
Below: Johnson-Lindenstrauss Lemma
Distance changes by a fraction |+\epsilon

F(z): R R*

Lemma 1. For any () < € < 1 and any integer n, let k be a positive integer such

that
k> 4(s2/2-€%/3)  Inn.

Then for any set V of any points in RY, there is a map f: R? — R* such that
Jorallu,veV,

(=g lu-v|* < |f@)-fO) P < (1+e)|u-v]|

Furthermore, this map can be found in randomized polynomial time.

S. Kaski, “Dimensionality reduction by random mapping: fast similarity computation
for clustering", Proceedings of The 1998 IEEE International Joint Conference
on Neural Networks, pp. 413-418, 1998.

In random projection matrix, each column is of unit norm. Values
are 0-mean Gaussian. So — random Gaussian vectors.

Reduced dimensionality space is not guaranteed to be in an
orthonormal coordinate system.

Distortion of the variances/covariances relative to orthogonality
of the random projections has approximate variance 2/m where
m is low dimensionality.

For sufficient m, orthonormal system is mapped into a near-
orthonormal system.

Kaski cites Hecht-Nielsen: the number of almost orthogonal
directions in a coordinate system, that is determined at
random in a high dimensional space, is very much greater
than the number of orthogonal directions.

Conventional random projections: random vectors that are
iid 0-mean Gaussian. This is only necessary condition for
preserving pairwise distances (Li, Hastie, Church, Proc. 12t
ACM SIGKDD, 2006).

Other work has used 0 mean, | variance, 4" moment =3.
Also elements of random projection matrix from {-1,0,1}
with different (symmetric in sign) probabilities.

It is acknowledged that: “a uniform distribution is easier to
generate than normals, but the analysis is more difficult”.



The non-conventional approach to random projections that is
at issue in the case studies described here

Uniform [0, 1) valued vectors in the random projection
matrix.

Projections are rescaled to be in [0,1), i.e. closed/open
interval.

Take mean (over random projections) of projected values.

It is known from the central limit theorem, and the
concentration, or data piling, effect of high dimensional
data clouds, that: pairwise distances become equidistant,
and orientation tends to be uniformly distributed.

We find also: norms of the target space axes are Gaussian.
(That is, before taking the mean of the projections.) As
typifies sparsified data, the norms of the points themselves
are negative exponential, or power law, distributed.

Scaling followed by clustering

Correlation between most projection vectors > 0.99. We
also found very high correlation between first principal

component loadings and the mean random projection (>
0.999999).

Our objective is less to determine or model cluster
properties as they are in very high dimensions, than it is to
extract useful analytics by “re-representing” the data. That
is to say, we are having our data coded (or encoded) in a
different way.

Summary Remarks on Reading Baire Distance Properties from
the (Mean) Random Projected Values

- We have a new way of inducing a hierarchy on data

- First viewpoint: encode the data hierarchically and essentially read off
the clusters

- Alternative viewpoint: we can cluster information based on the longest
common prefix

- We obtain a hierarchy that can be visualized as a tree
- We are hashing, in a hierarchical or multiscale way, our data
- We are targeting clustering in massive data sets

- The Baire method - we find - offers a fast alternative to k-means and a
fortiori to traditional agglomerative hierarchical clustering

- At issue throughout this work: embedding of our data in an
ultrametric topology

"MWYEPMNEENASR VSRV G L]
Means of 99 random projections.

Abscissa: the 10118 (non-empty) documents are
sorted (by random projection value).

Ordinate: each of 8 digits comprising random
projection values.
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Traditional clustering: use pairwise distances, determine
clustering structure (hierarchy or optimization of
criterion). Often: then a partition is determined.

Here we build a series of partitions. Then the hierarchy is
determined from them.



To be followed by —a look at
accompanying web site content
* Data sets used in this presentation.
* Software used — mainly in R.
* The processing carried out.

* Samples of the output produced.

Final Section of Lecture 3
New Perspectives and New Applications

Towards narratives of loT
(Internet of Things), Big
Data, and related
applications.

Ultrametricity — its role in
tracking and displaying the
unconscious.

Historical perspective on challenges and potential.

Historical Periods Focused On:

Compute: Better computer infrastructure, including
processor power and memory, up to the early 1990s.
Network: especially from the release of the Mosaic web
browser in early 1993. Followed later by search engines.
Data: from the late 2000s.

Addressing the New Data Challenges:

The new Data Science: the visualization and verbalization of data.
Extending data mining, knowledge discovery.

Achieving Excellence, Impact and Implementation (H2020 terminology) in:

Narratives of computation, and computational narratives in loT
(Internet of Things) and Cloud contexts.

Narratives of interaction, behaviour, experience. (Between lives
of narratives and narratives of lives.)

Tracking and Displaying Narratives of
Behaviour, Actions, Activities, Living

* Unsupervised.

Excellent for case studies:

Film scripts, novels, social media, focused
dialogue or monologue, e.g. court cases
Generally, too, new applications for loT,
forensics.

General and Broad Perspectives

= Integrate mathematical underpinnings, cross-
disciplinarity, company (commercialization)
plans.

= Consider the overall computational science
and engineering that support cloud
computing and PaaS (Platform as a Service),
analytics of massive data and big data,
complex systems, loT (Internet of Things)
and cyber systems.

Opportunity
£ |
Abounds. .. Model for Connected Health
I) Connected health @ Goouts i
E=TN > Q- 9 MeRCK

2) Environment and
Energy Diagnostics |
3) Smart cities ‘

4) Agriculture and

environment

Dis psition via
[Monitor and Diagnese | the Supply Chain

“Data is really the next form of 7N
URBAN:EUROPE

energy ... | view data as just a
more processed form of
energy”” Joint Programming Initiative

i i - Urban Europe

(Christian Belady, General
Manager, Data Center Services,
Microsoft)



Ultrametric embedding: setting the scene.
(Then to follow: perspectives arising out of
Matte Blanco’s work, and their application.)

* Measuring metric content of data.
* Enhancing, inducing metric geometry in
data.

* Measuring the ultrametric content of data.

* Enhancing, inducing an ultrametric
topology.

Quantifying and enhancing metric or
ultrametric properties

" Classical multidimensional — embed in a
metric space. Non-negative eigenvalues
indicate how metric the data is.

* Can add constant to dissimilarities to
enhance metric property.

» Ultrametricity: extent of respect of strong
triangular, or ultrametric, inequality.

Pervasive Ultrametricity

* As dimensionality increases, so does
ultrametricity.

* |n very high dimensional spaces, the
ultrametricity approaches being 100%.

» Relative density is important: high
dimensional and spatially sparse mean the
same in this context.

Fingerprinting Using Ultrametricity

I) Wide range of time series signals

2) Wide range of texts

Assessing the ultrametricity of
time series - |

* Fingerprint the time series signals based on their

ultrametricity.

 Approach used: Take “sliding window” of fixed length.

Used “window” sizesm =5, 10, I5, ..., 105, I 10.
Look at distance between each pair of values in the
window. Encode as high/low distance. Test
ultrametricity of all these indicators of local variability,
and accumulate ultrametricity index over all such
“windows”.

¢ In “window” code each value as | if there is no/small

change; and 2 if there is large change (up or down).
Small/large defined relative to threshold max; d;?/2, j,j
€ “window”. Recoded values are metric.

Ultrametricity of time series - I

* So in alocal region (window) we map pairwise dissimilarities

onto relative (i.e. local) “change = 2” versus “no change = 1"
distance.

* This is our “change/no change metric.

¢ Used signals: FTSE, USD/EUR, sunspot, stock, futures,

eyegaze, Mississippi, www traffic, EEG/sleep/normal,
EEG/petit mal epilepsy, EEG/irreg. epilepsy, quadratic
chaotic map, uniform.

* Signals can be clearly distinguished. Extremes are:

EEG and uniform.



Assessing the ultrametricity of text

Semantic networks defined from texts, through shared words.

= Used as texts: 209 tales of Brothers Grimm; 266 Jane Austen
chapters (full/partial) from 3 novels from 1811, 1813, 1817; 50 air
accident reports; 384 dream reports. In all: nearly 1000 texts, over
I million words.

= Use words as found (no stemming). Define %2 distance between
profiles of frequency of occurrence table.

= We “euclideanized” by mapping into correspondence analysis factor
space. E.g. for dream reports, 384 texts crossed by 11,441 words.

* Then we determined ultrametricity of text collections in factor
space.

* We found dream reports to be highest in ultrametricity (albeit with
fairly small coefficient of ultrametricity); and air accident reports
similar to Grimm texts.

Other assessments were carried out on Aristotle’s Categories; and
James Joyce’s Ulysses (304,414 words).

Ultrametricity (i.e. hierarchical substructure)
for various text collections

= 209 Grimm Brothers tales, 209 x 7443, ultrametricity
coefficient 0.1 147

= 266 Jane Austen chapters or partial chapters, 266 x
9723, ultrametricity coefficient 0.1404

= 50 aviation accident reports, 50 x 4261, ultrametricity
coefficient 0.1 154

= 385 dream reports, 385 x | 1441, ultrametricity
coefficient 0.1933

= |71 Barbara Sanders dream reports, 171 x 7044,
ultrametricity coefficient 0.2603 [We use this data

later.]
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“Approximation has two subtly
different aspects: metric and
topology. Metric tells how
close our ideal point is to a

specific wrong one. Topology
tells how close it is to the
combination of all
unacceptable (non-
neighboring) points”.

2004 Kolmogorov Medal
M. Gower, L.Levin, A. Gammerman

Leonid A. Levin, The tale of one-
way functions, Problems of
Information Transmission
(Problemy Peredachi Informatsii),
39 (1), 92-103, 2003.

(Also arXiv.org/abs/cs.CR/0012023)

Ignacio Matte Blanco (1908-1995)

Born Santiago, Chile. Trained in London, Maudsley Hospital in psychiatry,
London Institute in psychoanalysis. Worked in US, Chile, Italy. Died in Rome.

IGNACIO
MATTE BLANCO

The Unconscious us Infinite
Sets

Foman o Il baghe

Matte Blanco: There are “two fundamental types of being which exist within the unity of
every man: that of the ‘structural’ id (or unrepressed unconscious or system
unconscious or symmetrical being) which becomes understandable with the help
of the principle of symmetry; and that visible in conscious thinking, which
can roughly be comprehended in Aristotelian logic.”

Within a class, when symmetry logic applies: no contradiction, absence of negation,
displacement, space and time vanish, no relations of contiguity, no order. “the
unconscious does not know individuals but only classes or propositional functions
which define the class”.

“Consciousness ... when confronted by a whole class can only consider it in two
ways: either it focuses on the limits (or definition) of the class, that is, on those
precise features which characterize it and distinguish it from all other classes, or it
concentrates on the individuals which form the class.

These are the clopen properties of a set or class or ball in an ultrametric space. Or
a cluster.

A class comes about through condensation.

The principle of generalization relates different classes.

“Symmetrical being alone is not observable in man.” Even delineating it is “already
an asymmetrical ... activity”. So the symmetrical (and unconscious) is measurable
but only in the context of the asymmetrical (and physical or empirical world).

“We must ... keep in mind the possibility that if things are viewed in terms of
multidimensional space, symmetrical being can actually unfold into an infinite
number of asymmetrical relations.”

53

Expressing Matte Blanco’s symmetric
mental processes

= Cluster members, as members of the

cluster are conflated, they are identical.

= Every member of a cluster can be

considered its centre. (And the radius of a cluster/
ball is equal to its diameter.)

» Each cluster/ball is topologically open and

closed. This is referred to as sets being
clopen.



Words, and language, are tracers for what lies behind

“Consciousness cannot exist without asymmetrical
relations, because the essence of consciousness is to
distinguish and to differentiate and that cannot be done
with symmetrical relations alone.”

“Symmetrical being is translated into asymmetrical terms
by means of words. Words (i.e. their meanings) are the
asymmetrical tools of the translating-unfolding
function." (ltalics in the original.)

We have that “words, abstract things, fulfill the function of
differentiating between concepts and also between other
things. They are bound to be, therefore, highly
asymmetrical in their structure.”

How Matte Blanco’s approach can be related to empirical data:
through adoption of appropriate representations

Matte Blanco s asymmetric logic (Aristotelian logic), asymmetric
being. Conscious thought processes.

... Metric representation.

Matte Blanco’s symmetric being. Unconscious reasoning processes.
Identity within a class. Only classes (or propositional functions) are
at issue. A class comes about through (Freudian) condensation.
Principle of generalization relates classes.

... Partially ordered sets (posets) of classes, implying: Ultrametric
representation.

Note however the earlier Matte Blanco indication that the
symmetrical (and unconscious) is measurable but only in the context
of the asymmetrical (and physical or empirical world).

An ultrametric topology - a “tree topology”.

As a visual, or representational, model, it does rather well - very
well, in fact - in expressing and encapsulating the context of Matte
Blanco’s unconscious reasoning.

Also it - the hierarchy, the ultrametric topology that underpins
the hierarchy - can be induced from the data.

Then the question becomes: what data?

In line with Bourdieu’s work, for example, we need to find the
data that supports the investigation that we want to pursue.
Induction (and transduction, and maybe even some deduction) is
key.

Data? - written, or verbal, or other activity expressed by the
subject, encompassing conscious reasoning, and unconscious
reasoning processes.

Metric Properties Are Closely Associated with
Conscious Mental Processes
i.e. our 3D ambient space, and the time dimension

= Semantics of interrelationships are expressible
through metric mapping.

* (Whereas Matte Blanco’s asymmetric thought
processes requires classes and their relationships.
Semantics are of relevance there too, e.g. anomaly
and exception, as will be exemplified.)

Ultrametric Properties Are Closely Associated
with generative processes, and anomaly and
exception.

(Potentially of relevance for Matte Blanco’s
symmetric logic, reflective of unconscious
thought processes.)

Cell structures
from pigeon
cerebellum, by
Santiago Ramoén y
Cajal,

1899, Madrid




How a hierarchy expresses anomaly or change.
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Factor 2

Determining vestiges of the subconscious
through ultrametric component analysis

DreamBank repository, 139 Barbara Sanders dream reports (1980 to 1997).
2000 terms, 30 of them indicated below - see how Tyler and Jared; Lance and
dragon; Valerie, football, Peter, director, Jamie; etc. come out close. Note this is a
planar approximation — 2.2% and 1.37% of the inertia explained by these factors,
respectively.

tyler

jared

Factor 2
0

Factor 1

Determine ultrametric-respecting components in a consensus hierarchy

20
Factor 2
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Factor 1
Upper left: consensus ultrametric
(of two different agglomerative
Consensus hierachy criteria, Ward’ s, single link).

Upper right: in principal factor plane, 163
ultrametric triplets determined in the (full
dimensional, Euclidean) factor space.

Left: three of these triplets. Small base of
isosceles (in full dimensional space) in red.

Howard: ex-husband, divorced, died.

Derek: had an affair with.

Jamie: friend, homosexual.

Tyler: co-worker.

Lance: married, former city manager assistant to
Factor 1 disability rights group.

dragon: (no information about this).

Consensus hierarchy in an ultrametric topology

Consider two hierarchies constructed on the same object set. Consider all
triplets of objects, i,j,k.

A morphologically consistent isosceles-with-small-base triplet means that the apex
vertex, i, has the same label in both hierarchies, and the base pair, j and k, have the
same labels.

Count these matches between the hierarchies. The count is that of isosceles-with-
small-base that are consistent for the two hierarchies. The total number of
triangles considered, for n observations (hence n terminal nodes in the
hierarchical tree), is n(n-1)(n-2)/(3.2.1). This furnishes a coefficient of ultrametric
consensus between the two hierarchies, or ultrametric embedding of the same set
of observations.

Consensus hierarchy: For all isosceles-with-small-base triples that are
morphologically consistent, use the minimum, between the two hierarchies
considered, pairwise distances.

For morphologically inconsistent triplets, we put all in the triplet considered to
be equal to the minimum of all triplet pair distances, i.e. the single minimum value.
We use the minimum in view of the maximal inferior ultrametric properties that
ensue, i.e. the optimal fit from below. The consensus hierarchy is commutative
over the pair of hierarchies, and unique for a given pair of hierarchies.



Conclusion

= We can pick out patterns that respect an
ultrametric topology. Then we need to analyze
them.

= Cf. earlier work where novels and other texts
were quantified in terms of inherent ultrametric
content. Following that, the task becomes (i)
determining the ultrametric patterns, and (ii)
interpreting such patterns.

* Next slide - some computational perspectives on this.

Far Greater Computational Power of Unconscious Mental Processes

= Conscious thought can process between |10 and 60 bits per second. E.g. reading,
about 45 bits per second.

* But human visual system alone: about 10 million bits per second.

= Conscious thinking is both limited and limiting.

= “conscious thought is guided by expectancies and schemas" (Dijksterhuis and
Nordgren, 2006). Limited capacity therefore goes hand in hand with use of
stereotypes or schemas.

* Stereotypes may be “activated automatically (i.e., unconsciously)", but “they are
applied while we consciously think about a person or group". Conscious thought
is therefore more likely to (unknowingly) attempt “to confirm an expectancy
already made”.

= Unconscious thought is less biased in this way, and more slowly integrates
information. “Unconscious thought leads to a better organization in memory",
arrived at through “incubation" of ideas and concepts. “The unconscious works ...
aschematically, whereas consciousness works ... schematically”. ‘... conscious
thought is more like an architect, whereas unconscious thought behaves more like
an archaeologist".

*  Through Matte Blanco’ symmetry logic, and ultrametric topology, we know just
how unconscious thought processes can be so superior from the computational
aspect - they are hierarchical and generative.

(See my paper, "On ultrametric algorithmic information”, Computer Journal, 2010)
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