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Figure 1: Overview of the proposed Counterfactual Inpainting (COIN) pipeline [1]. Given the input image X and image classifier f, the GAN model inpaints the pathology. The absolute
difference of the original image X and counterfactual image X results in a weak tumor segmentation map.

Comparison of COIN with other methods
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Figure 2: Visualization of the attribution and COIN pipeline methods’ predictions on To-
talSegmentator and TUH datasets [1]. The colors represent ground truth (white), true
positives (green), false positives (red), and false negatives (yellow).

Datasets Methods FID | CV 1 IoU 7
ScoreCAM - - 0.030

LayerCAM - - 0.026

TotalSegmentator RISE - - 0.397
Singla et al.* 0.047 0.998 0.445

COIN 0.003 0.997 0.646

ScoreCAM - - 0.293

LayerCAM - - 0.296

Tartu University Hospital RISE - - 0.294

Singla et al.* 0.203 0.992 0.352
COIN 0.036 0.980 0.432

Table 1: Metric results for the attribution methods and the COIN pipeline on TotalSegmen-
tator and TUH datasets [1].

Conclusion

Our innovative Counterfactual Inpainting (COIN) approach inspired by the work of Singla
et al. [2] accurately segments pathology regions in CT scans without reliance on the exist-
ing segmentation masks. COIN’s main architectural improvements are:

1) Perturbation-based image generation yields great fidelity counterfactual images.

2) Simplified conditioning to focus only on the inpainting counterfactual generation.
3) SKkip-connections for improving the image generation quality of the counterfactuals.
4) New loss function for enforcing smoothness among counterfactual images.

COIN examples on Tartu University Hospital dataset
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Figure 3: Visualization of counterfactual examples generated with COIN for TUH valida-
tion set [1]. The model correctly inpaints majority of the tumors (red contours).
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