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eQTL - a variant which affects sQTL - a variant which affects
gene expression splicing patterns

Mode of action (MoA) of a genetic variant - the specific way in which the
variant influences the complex trait on a molecular level.
Drug trials for diseases with known causal genes have a higher chance of
success [1]. One way to be more confident about causal genes is to
prioritise sQTLs over eQTLs as drug targets. eQTL catalogue is a
collection of uniformly re-computed eQTLs and sQTLs from 32 studies [2].
However, quantification methods used to distinguish between ditferent
modes of action are not reliable and do not work with low-frequency
alleles.

Obijective

To investigate the potential of machine learning (ML) for predicting the
mode of action of genetic variants. We aim to develop a model that can
differentiate between eQTLs and sQTLs using sequence features. The
approach involves the following steps:
1.Building a dataset specitically for variant MoA analysis.
2.Validating the latest splicing and chromatin accessibility prediction
models on a manually curated set of variants
3. Developing a variant mode of action prediction model that
incorporates both traditional and neural features.

Methods

The Mode-of-Action (MoA) dataset was collected in three steps: manual
labelling, chromatin accessibility (ca)QTL mapping and QTLs that affect
gene expression via chromatin accessibility (ceQTLs) definition.
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MoA model is a simple binary classifier - logistic regression or decision
tree - which uses a set of classic and neural features to predict the mode
of action of a variant.

Classic features Neural features
1.Binary variable indicating 1.Splicing scores from SpliceAl [3]
whether the variant is located and Pangolin.
within the gene body 2.Enformer [4] SAD scores for five
2.Distance from the variant to the CAGE tracks (gene expression)
closest annotated splice junction  and five DNASE tracks.
3.Number of overlaps with open 3.ChromBPNet [5] difference scores
chromatin regions in 5 cell types.  for five cell types.

4.Number of overlaps with binding
sites of RNA binding proteins.

We compared our composite MoA model against a monolithic unified
model (190M params), called Borzoi, which directly predicts RNA-seq
coverage [6]. In the paper, Borzoi authors demonstrated its ability to
distinguish between sQTLs, eQTLs and matched set of negatives. So, we
used Borzoi’s cell type specific RNA-seq and DNASE tracks scores to fit a
classitier.

[1] Eric Vallabh Minikel et al. “Refining the impact of genetic evidence on clinical success”. In: Nature (2024).
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SpliceAl and Pangolin scores for hand-labelled set of sQTLs.
on caQTL datasets.

Cell Logistic Regression Random Forest

type Borzoi MoA Borzoi” MoA Borzoi MoA Borzoi* MoA
(Neural) (Neural)” (Neural) (Neural)”

All 0.71 0.848 - - 0.8  0.865 -

LCL 0.637 0.814 0.604 0.847 | 0.825 0.864 0.827 0.88
monocytes | 0.614 0.837 0.588 0.864 | 0.819 0.885 0.774 0.87
naive T cells| 0.577 0.851 0.648 0.873 | 0.829 0.803 0.786 0.87

Comparison of MoA model and Borzoi-based classifiers (11 score)
* - cell type specitic features were used.
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Conclusion

We collected the MoA dataset, which includes two classes of molQTLs: splicing QTL and gene expression
influenced by chromatin accessibility QTL. In parallel, we compared the performance of two deep learning
models, Enformer and ChromBPNet, which represent two opposite approaches to predicting regulatory activity,
on a set of fine-mapped chromatin activity QTLs. ChromBPNet proved to be more precise in predicting the
caQTLs effect. Finally, we built the MoA model, combining classic genomic features and predictions of single-
task deep learning models. The model demonstrated nearly 90% accuracy in distinguishing between the two
QTL classes, compared to the 80% accuracy achieved by a classifier based on scores from a single multi-task
large-scale model.

Finally, we scored the QTLs from the eQTL catalogue, detected by either gene expression or Leafcutter methods,
with our model. This analysis revealed that while predictions from the MoA model more or less align with gene
expression QTLs, most of the Leafcutter QTLs are not classified as sQTLs.

[2] Nurlan Kerimov et al. “A compendium of uniformly processed human gene expression and splicing quantitative trait loci”. In: Nature Genetics 53 (2021), pp. 1290-1299. /A\
[3] Kishore Jaganathan et al. “Predicting Splicing from Primary Sequence with Deep Learning”. In: Cell 176 (2019), 535-548.e24.
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[5] Anusri Pampari et al. “Bias factorized, base-resolution deep learning models of chromatin accessibility reveal cis-regulatory sequence syntax, transcription factor
footprints and regulatory variants”. URL: https: //github.com /kundajelab /chrombpnet.
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