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Objective

Methods

Results

Conclusion
We collected the MoA dataset, which includes two classes of molQTLs: splicing QTL and gene expression
influenced by chromatin accessibility QTL. In parallel, we compared the performance of two deep learning
models, Enformer and ChromBPNet, which represent two opposite approaches to predicting regulatory activity,
on a set of fine-mapped chromatin activity QTLs. ChromBPNet proved to be more precise in predicting the
caQTLs effect. Finally, we built the MoA model, combining classic genomic features and predictions of single-
task deep learning models. The model demonstrated nearly 90% accuracy in distinguishing between the two
QTL classes, compared to the 80% accuracy achieved by a classifier based on scores from a single multi-task
large-scale model. 
Finally, we scored the QTLs from the eQTL catalogue, detected by either gene expression or Leafcutter methods,
with our model. This analysis revealed that while predictions from the MoA model more or less align with gene
expression QTLs, most of the Leafcutter QTLs are not classified as sQTLs.

eQTL - a variant which affects
gene expression

sQTL - a variant which affects
splicing patterns

Mode of action (MoA) of a genetic variant - the specific way in which the
variant influences the complex trait on a molecular level. 
Drug trials for diseases with known causal genes have a higher chance of
success [1]. One way to be more confident about causal genes is to
prioritise sQTLs over eQTLs as drug targets. eQTL catalogue is a
collection of uniformly re-computed eQTLs and sQTLs from 32 studies [2].
However, quantification methods used to distinguish between different
modes of action are not reliable and do not work with low-frequency
alleles.

To investigate the potential of machine learning (ML) for predicting the
mode of action of genetic variants. We aim to develop a model that can
differentiate between eQTLs and sQTLs using sequence features. The
approach involves the following steps:

Building a dataset specifically for variant MoA analysis.1.
Validating the latest splicing and chromatin accessibility prediction
models on a manually curated set of variants

2.

 Developing a variant mode of action prediction model that
incorporates both traditional and neural features.

3.

Classic features
Binary variable indicating
whether the variant is located
within the gene body

1.

Distance from the variant to the
closest annotated splice junction

2.

Number of overlaps with open
chromatin regions in 5 cell types. 

3.

Number of overlaps with binding
sites of RNA binding proteins.

4.

Neural features
Splicing scores from SpliceAI [3]
and Pangolin. 

1.

Enformer [4] SAD scores for five
CAGE tracks (gene expression)
and five DNASE tracks. 

2.

ChromBPNet [5] difference scores
for five cell types.

3.

The Mode-of-Action (MoA) dataset was collected in three steps: manual
labelling, chromatin accessibility (ca)QTL mapping and QTLs that affect
gene expression via chromatin accessibility (ceQTLs) definition.

Manual labelling
RNA-seq coverage plots,

select sQTLs

caQTLs (fine)mapping ceQTL definition
6 datasets, 5 cell types caQTLs ∩ eQTLs from the eQTL

Catalogue

MoA model is a simple binary classifier - logistic regression or decision
tree - which uses a set of classic and neural features to predict the mode
of action of a variant.

We compared our composite MoA model against a monolithic unified
model (190M params), called Borzoi, which directly predicts RNA-seq
coverage [6]. In the paper, Borzoi authors demonstrated its ability to
distinguish between sQTLs, eQTLs and matched set of negatives. So, we
used Borzoi’s cell type specific RNA-seq and DNASE tracks scores to fit a
classifier.
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Comparison of MoA model and Borzoi-based classifiers (f1 score)
∗ - cell type specific features were used.

Distribution of the MoA model probabilities for eQTL catalogue QTLs.
(detected by ge - alleged eQTLs, by Leafcutter - alleged sQTLs)

Borzoi classifier (Random Forest) MoA model (Random Forest)

SpliceAI and Pangolin scores for hand-labelled set of sQTLs. Performance of ChromBPNet and Enformer
on caQTL datasets.


