Deblurring of microscopic 3D spheroid images using GANs

Data

Unsupervised dataset
- “Clear”
- “Blurred”

Supervised dataset
- “Clear”
- “Blurred”

Supervised dataset
- “Clear”
- “Blurred”

Acknowledgements
We thank PerkinElmer Inc. for support and High Performance Computing Center of the Institute of Computer Science at the University of Tartu for the provided computing power.

Models

Figure 2. Training of unsupervised models. Left: Training of CycleGAN. Right: Training of CycleGAN with conditional planes.

Figure 3. Training of supervised model.

Figure 4. Visual results of best experiments using CycleGAN trained on data with different augmentations

Figure 5. Measurements of best experiments using CycleGAN

Figure 6. Visual results of best experiments using CycleGAN with conditional planes.

Figure 7. Measurements of best experiments using CycleGAN with conditional planes

Figure 8. Comparison of visual results of best supervised and unsupervised models.

Figure 9. Comparison of measurements of best supervised and unsupervised models.

Key Takeaways
- Simpler model trained on a smaller supervised dataset can generate images better than a more complex framework trained on unsupervised data.
- The performance of the supervised model is limited due to the poor quality of the corrected images.

Experiments

Figure 1. Datasets.

- 4 sequential stacks, 230 images each
- 31 spheroids

- 1 sequential stack, 300 image pairs
- Image pairs consist of raw and semi-manually corrected “Clear” images
- 7 spheroids

Experiments with augmentations:
- “Filter out” — decrease the background intensity and remove adjacent spheroids
- “Blur” — apply heavy Gaussian blur on the nearby spheroids.
- “Dilate” — apply dilation morphology operation on segmentation mask and remove anything outside the mask.

Experiments with conditional planes:
- U-Net + PatchGAN — U-Net based generator, PatchGAN on 70x70 pixels discriminator
- U-Net + PixelGAN — U-Net based generator, PatchGAN on 1 pixel (PixelGAN) discriminator
- Both models use 1 conditional plane

Results

Best models:
- CycleGAN — model trained on non augmented images
- CycleGAN with conditional planes — model that uses U-Net+PixelGAN
- 3D-U-Net — model trained on 500 epochs