

Computer Vision Meets Microbiology: Deep Learning Algorithms for Classifying Cell Treatments in Microscopy Images

Author: Ali Zeynalli, BSc student Supervisor: Dmytro Fishman, PhD

INTRODUCTION

Cell classification is one of the most complex challenges in biomedical research that has significant importance to personalised medicine, cancer diagnostics and disease prevention.

AIM: explore the potential of deep learning to automate the classification of microscopy cell images into four cell treatments: Palbociclib, MLN8237, AZD1152 and CYC116.

DATASET

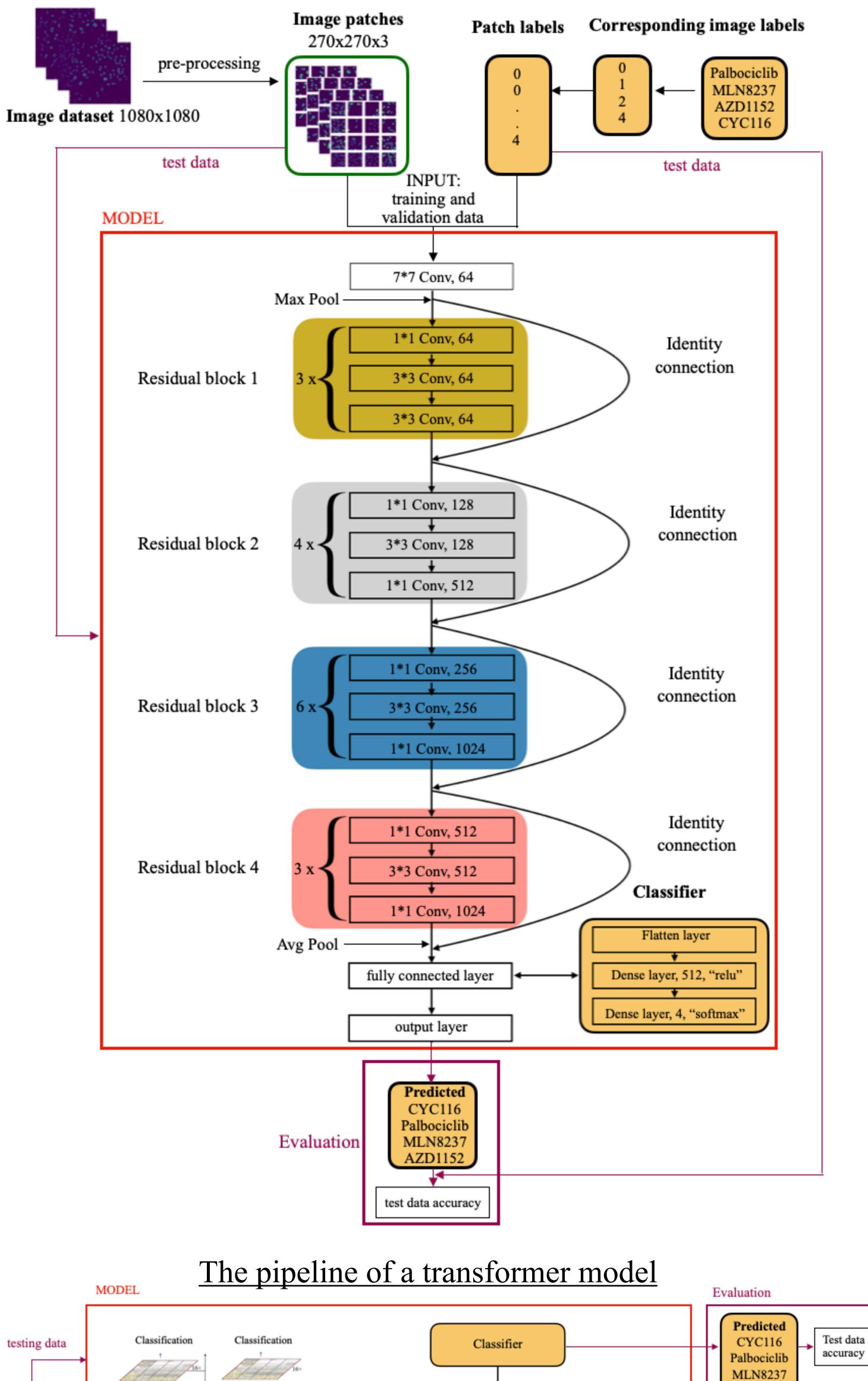
The dataset consists of 696 images. There are 4 cell treatment classes: Palbociclib contains 192 images; MLN8237, AZD1152 and CYC116 classes contain 168 images each.

Each image of the dataset consists of 7 channels: 5 fluorescence channels and 2 bright-field channels, examples are shown below:

METHODS

Three pre-trained state-of-the-art deep learning models, such as ResNet50, ViT and Swin Transformer were utilised to automatically classify bright-field and fluorescent microscopy images across single and multi channels.

The pipeline of the ResNet50 model



TRANSFORMER ENCODER (e.g., ViT, Swin)

Linear Projection + Position Embedding

Vision

Transformer

(ViT)

Generate Image

Patches

Swin

Transformer

training and

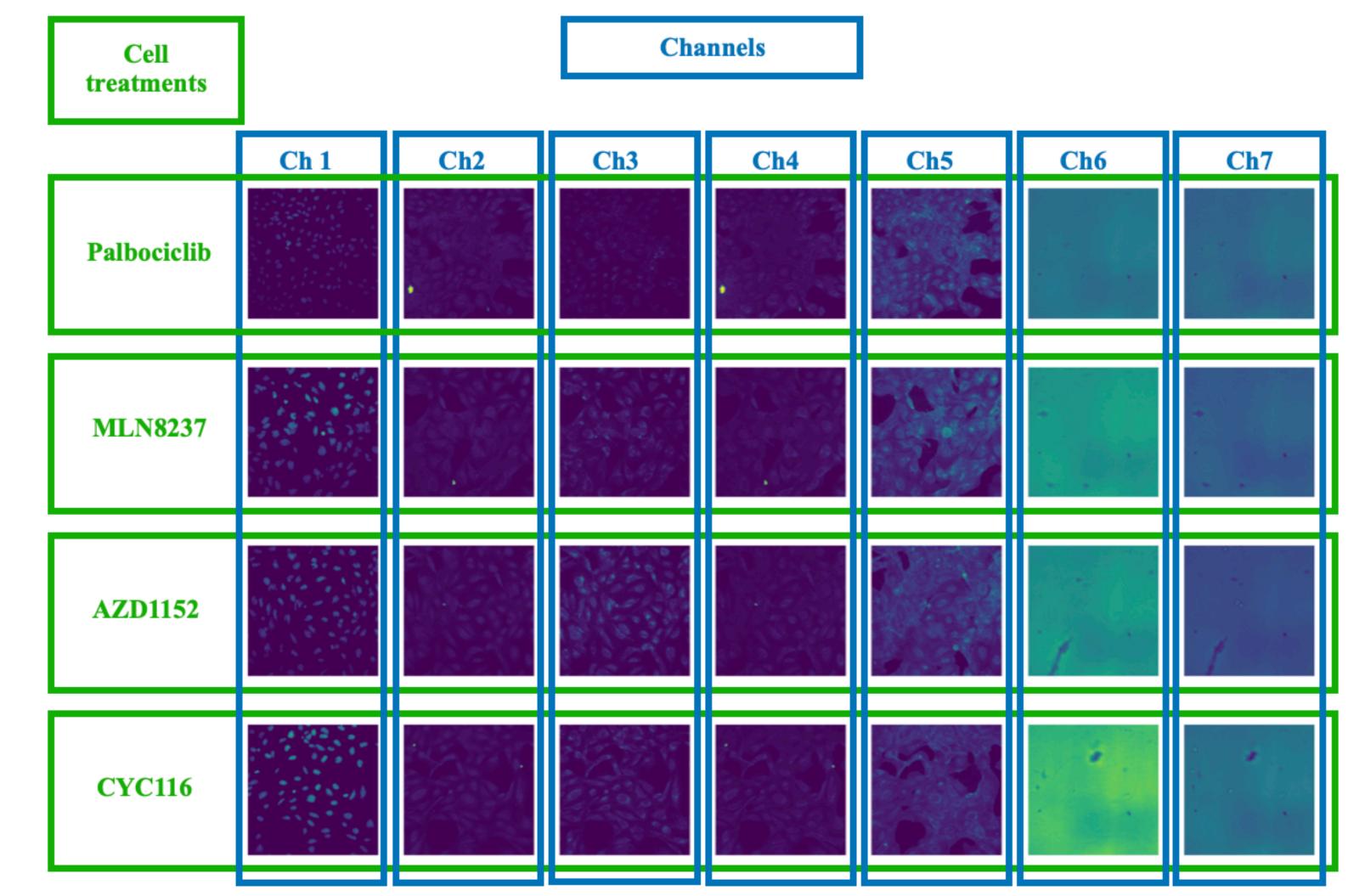
validation data

Labelled

input images

(1080x1080)

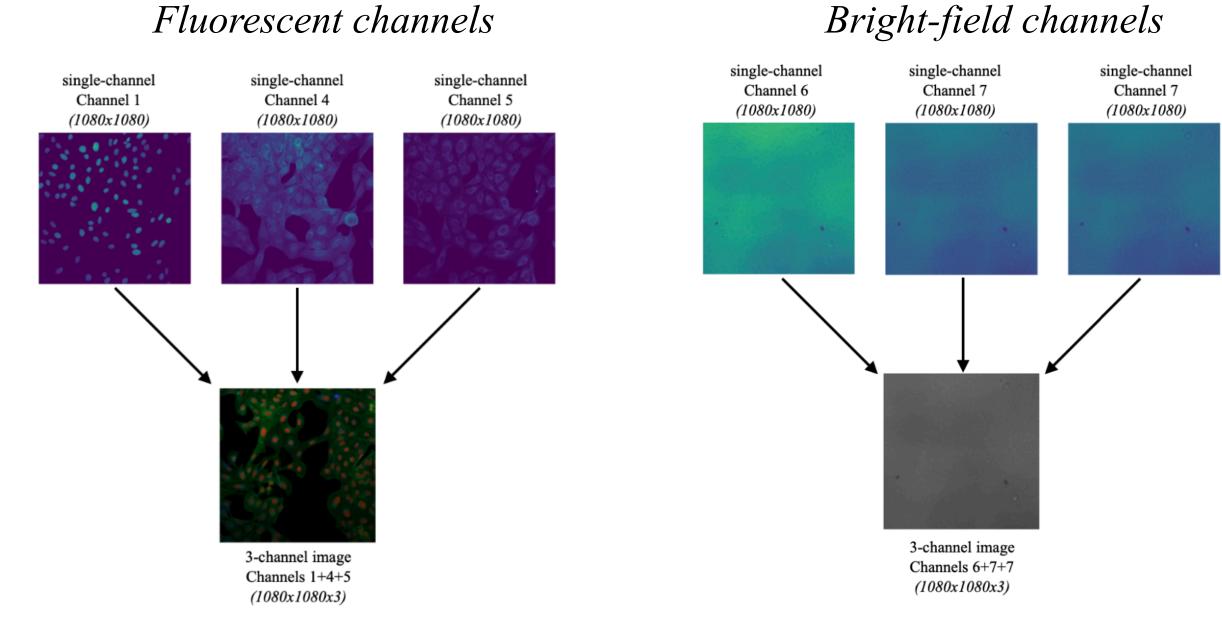
AZD1152



EXPERIMENTAL RESULTS

Approach 1: Apply DL models to classify cell treatments on single-channels.

Approach 2: Apply DL models to classify cell treatments on three-channels. Process of combining three single-channels into one three-channel image



Approach 3: Apply DL models to classify cell treatments on many-channels (> 3)

The results of 1st and 2nd experimental approaches, since 3rd approach is on training

Channel	Fluorescent						Brightfield		
	1	2	3	4	5	1+4+5	6	7	6+7+7
Experimental approach	1st 2nd 1st							2nd	
Model	Accuracy on test image data, in %								
ResNet	80.0	75.0	69.0	77.0	77.0	84.0	59.0	61.0	52.0
ViT	78.0	34.0	27.0	39.0	27.0	38.0	27.0	27.0	27.0
Swin	79.0	48.0	26.0	44.0	35.0	86.0	27.0	27.0	59.0

CONCLUSION&FUTURE WORK

- The highest accuracy achieved on <u>3-channel fluorescent images</u> was **86%** by Swin Transformer.
- The highest accuracy achieved on 3<u>-channel bright-field images</u> was **59%** by Swin Transformer. While ResNet has achieved 61% accuracy on 1-channel bright-field images.
- This necessitates further exploration of DL models for classification of single- and multi-channel bright-field microscopy images.