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Introduction

Nuclear magnetic resonance (NMR) spectra are the fingerprints of the molecule that can be used to
identify the molecule’s structure, (Fig 1). These spectra are often visualized using graphs, as seen
in Fig 2. Reading the spectrum requires specialized knowledge, and even then the decision often
comes down to some potential candidates. Databases exist that collect NMR spectra so that the
specialist can, through process of elimination, remove non-matching candidates. However, since the
chemical space is vast and the machines required for measuring shifts are relatively expensive, then
there is a need for accurate models that can predict spectra.

Atom Shift(ppm)
1 137.56
2 130.00
3 137.65
4 126.25
5 128.25
6 126.25
7 21.25
8 21.25

Fig. 1: 1,3-dimethylbenzene and its NMR spectrum

Fig. 2: 1,3-dimethylbenzene spectrum as a graph. Higher peaks indicate that there are multiple
atoms with same shift.

There are two different approaches to predicting NMR shifts: data-driven and ab initio. Methods
based on the latter predict the spectra based on detailed quantum computational calculations. In
contrast to data-driven methods, this approach does not rely on existing data, however each predic-
tion requires long and complex calculations. Therefore there are ongoing efforts to get better results
with low amounts of data.

Methodology

➤ Obtaining Data - All spectra were from open-sourced web database nmrshiftdb2[4],

➤ Preparing Data

– Descriptor/feature calculation and selection - rdkit[6], mendeleev[7]

– Formatting descriptors as a graph - pytorch[5]

➤ Training models

– HOSE-code based model. This is a relatively simple model originating from 1978[1], that
generates a map of neighboring atoms of each atom in the training set and associates the
neighborhood to the measured shift value. During the prediction phase, the model searches
for the largest identical neighborhoods and, if found, then outputs its shift. Fig 3 illustrates
neighborhoods of different widths for a carbon atom in the ibuprofen molecule.

– GNN model architecture from an article[2] where it was used to predict 2H NMR order
parameters.

➤ Comparing results

– The HOSE-code-based model, GNN model (2023) and the previous best GNN-based model
(2019) from paper of Jonas and Kuhn were compared[3]

– Models were tested on 19F (957 molecules) and 13C (44370 molecules) NMR spectra
datasets.

Fig. 3: Image shows neighborhoods used to construct HOSE codes for carbon atoms circled in red.
The bigger the radius of the circle, the more layers of nearest atoms are considered to be in the

neighborhood and therefore, if two atoms have identical HOSE codes up to a large radius (6+), then
they also have almost equal NMR shift.

Results
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Fig. 4: Mean average error of 13C NMR shift prediction in relation to number of available spectra
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Fig. 5: Mean average error of 19C NMR shift prediction in relation to number of available spectra
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Conclusions

➤ The model developed during this project has better MAE accuracy than NN-based methods
when available spectra are low (<5000).

➤ When less than 1000 spectra are available, the HOSE-code-based model performs better than
all NN-based methods.

➤ A sweet spot exists between 1000-5000 spectra, where the model developed in this project
could perform better than all other data-driven methods.
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