
























  











































 


















 




 







 














 
















 




































 





















 

 


























 

















 





 

















 













 




 




 

 

 




 



  





















































 














 






 

 





The web-app version of our approach, which provides multiple
graphical views on the results of the lexical analysis.

sponsored by Skype TM
Study IT in .ee

from
 Í upphafi skapaði Guð himin og jörð.to
 i upphafi skapadi gud himin og jord

Text-based Similarity Analysis of Languages

Damerau-Levenshtein distance

From "alussa" to "alguses"
with Levenshtein:

Total distance = 3

The Levenshtein distance, also known as edit distance, is determined
by the number of single character edit operations needed to change
one string into another. A smaller score indicates larger similarity.

The classic Levenshtein distance uses the following operations: inser-
tions, deletions or substitutions. However, we used a modified version
of this algorithm, called the Damerau–Levenshtein distance, which
also allows the swapping of two neighbouring characters.

To prevent dissimilar, short strings getting good scores through coinci-
dence, we normalized the distance using the length of the longer
string of the pair being compared. This prevents distances between
small strings being as significant as distances between longer strings.

The Data
From a variety of online resources, we devised a dataset consisting of
the first chapter from the Book of Genesis from the Old Testament,
in 20 European languages.

The Bible was chosen as it is a piece of text which is freely available
in a plethora of languages. In addition, the verses of the Bible provide
the quality of having subparts of the text which are semantically equiv-
alent.

Method
Results

In order to compare any pair of languages, we combined two string dis-
tance measuring algorithms: Damerau-Levenshtein distance and the
length of the longest common subsequence to create an ensemble
where 40% of the final distance score is attributed to the Damer-
au-Levenshtein measure and 60% is attributed to LCS.

Longest Common Subsequence
This algorithm, given multiple sequences, finds the longest subse-
quence which is contained in all of the given sequences. The impor-
tant difference between finding common subsequences and sub-
strings is the fact that subsequences do not need to be consecutive.

In our case, the length of the longest common subsequence (LCS)
indicates the similarity of two languages. The bigger the length, the
more similar the languages.

x = in the beginningy = in den biginneLCS(x,y) = inebginn
LCS SCORE = 8

Using lexical distance and the Bible, we explored the similarity of 20 European languages
and devised an approach that can successfully recognize similarity between languages with re-
sults comparable to established language family groups. Additionally, the analysis tool has
been implemented as an easy-to-use web application.

Preprocessing
In order to make the languages comparable, we got rid of punctuation,
newline- and excessive whitespace characters. In addition, we trans-
formed all characters to lowercase since the distance measures are
case sensitive.

We replaced all language-specific special characters with similar, more
general characters a process known as transliteration (Latin to ASCII
characters) . For example, õ,ä,ö,ü are turned into o,a,o,u.

1. Insert

2. Replace

3. Replace

alussa

algussa

algusea
e

s

g

Using our combined distance measure, we were able to meaningfully
represent the data on a graph representing the distances and rela-
tions between the 20 languages in our dataset. The graph distin-
guishes 5 main language groups, for example, the Finno-Ugric family
or the Romance languages.

After finding the results satisfactory, we organized our approach into
an easy-to-use web application which can be found at:
 http://kodu.ut.ee/~jaks/langdist

The application is based on R and Shiny and can be used with arbi-
trary inputs. It performs our analysis on the provided input and pro-
vides additional graphical views such as heatmaps and dendograms.

Source code available at: https://github.com/jaks6/LangDist

https://github.com/jaks6/LangDist

Short strings have higher chance
to be similar through coincidence:

Levenshtein("abc","xyz")= 3

Thus,
length-based
normalization
is needed!

Johann Lutterodt
(M.Sc. Exchange student from the University of Konstanz)

Jakob Mass
(1st yr Software Engineering M.Sc.)

Institute of Computer Science, Faculty of Mathematics and Computer Science, University of Tartu

