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Forecasting is an act of predicting the future that comes with a de-
gree of uncertainty. That is why a probabilistic expression of the
future suits its remote and uncertain nature better than other forms.
Deep Learning is taking a prevalent role in today’s industries. It is
being employed in more mission-critical tasks such as self-driving
cars as well as tasks that may not require a safety measure, yet
require some measure of reliability such as in energy power fore-
casting. Taking uncertainty into account in these models is a key
enabler to account for safety and reliability in these models. This
poster demonstrates some of the experiments performed for my
master thesis to perform probabilistic forecasting using a type of
Variational Bayesian Approximation for neural networks.

Reliable forecasting models play a crucial role in operations of
electricity grid. Wind power is expected to provide at least 50% of
the electricity production in Estonia and Sweden in the upcoming
decade. Therefore, this work was motivated to be applied on Wind
Power Forecasting.

Background

Time-series Forecasting
In the Time series forecasting, a history of data up to time is given
and a prediction should be made for the future for a given num-
ber of steps. Data points are dependent on each other and may not
be identically distributed. Each step in the forecast referred to as a
lead time, and the whole forecast steps referred to as horizon. Equa-
tion (1) denotes the observed values of a time series from the past
to the present and the future.

y0, y1, . . . , yt, yt+1, . . . , yt+h h ∈ N>0 (1)

Additional features could be incorporated in univariate time series
forecasting that it is referred to as exogenous variables.

Bayesian Deep Learning
A Bayesian neural network (BNN) [1] considers a distribution over
its parameters as well as its outputs as opposed to a generic Artificial
Neural Network (ANN) which may be referred to as Non-bayesian
Neural Network as well. Calculating the posterior of a Bayesian
model is intractable for neural networks due to humongous param-
eter space even with relatively small networks. In [3] authors in-
troduce Monte-Carlo Dropout (MCDO) network as an approxima-
tion of BNN that gives reasonably good results to approximate a
Bayesian Neural Network.

Probabilistic Forecasting
Probabilistic or Dense Forecast is the most informative form of
forecast that estimates a probability distribution rather a point fore-
cast for each time step. It is common to demonstrate a probabilistic
forecast using fan-charts, each fan representing a quantile of the
probability distribution as depicted in Fig. 5.

Evaluation metrics
CRPS [7] evaluates quality of a probabilistic forecast represented by
a predictive cumulative distribution function Ft(y) against the true
value or observed probability passed through a heaviside function
H(y, ŷ) as shown in Eq. (2). An important property of CRPS is that
it measures the accuracy, as well as the sharpness of the predictions
which means calibratedness of the forecasts is also reflected in the
score. When CRPS normalized, it is denoted as NCRPS.

NCRPS(y) =
1

n(T)
∑
t∈T

∫ ∞
−∞

(
Ft+h|t(y)−H(y − yt+h)

)2 (2)

Mean Squared Error (MSE) has the same measurement unit as of
the squared of the series evaluated for. It is also equivalent to the
variance of the model output if the model is unbiased and it is tra-
ditionally used for point estimate forecasts.

MSE(h) =
1

n(T)
∑
t∈T

(ŷt+h|t − yt+h)
2 (3)

Data
For the experiments with Synthetic data, the TimeSynthwas used
to generate and sample from a sinusoidal signal with frequency.

For the experiments with real data, wind power dataset from
Global Energy Forecasting Competition 2014 [5] was used. Setup
of the data performed according to [4]. Two sets of experiments
conducted on this dataset, a univariate forecasting, and univariate
forecasting with 4 wind speed features as other predictors.

Baseline Models
Persistent or naive forecast is a well-known time-series forecasting
baseline. It uses the last observation as the forecast.

Methods

Probabilistic Baseline
Naive method extended to provide probabilistic baseline where a
given quantile of the training data is being used as the forecast.

Models
Methods explained in this section were mainly inspired by [6]. A
Multi-layer Perceptron (MLP), and a Recurrent Neural Network
(RNN) with GRU cells [2] as depicted in Fig. 1 were used. Both
models provided two outputs, one estimating the mean and the other
the variance of the forecast. 100 units were used with a dropout rate
of 0.3 for both models. For the RNN, recurrent dropout was used.
The batch size for all experiments set to 32. All models were run for
10 epochs with Adam optimizer and Cyclical Learning Rate Sched-
uler [8]. Activation function for the first layer set to linear for the
MLP and tanh for the RNN. Activation of the first dense output that
estimate the mean set to hard sigmoid, and the second dense output
that estimates the logarithm of the variance set to linear.
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Architecture of MLP (left) and RNN (right)

Models were trained to forecast one-step ahead and to achieve
multi-step ahead forecast roll-forward forecasting was used.

Uncertainty in the data, also referred to as Aleatoric uncertainty,
is mainly caused by partial observability and stochasticity in the
underlying process generating the data, and/or errors in measure-
ments. It is estimated by the second output of the models. A new
loss as shown in Eq. 4 is then used. In this way, the network is en-
couraged not only minimize the mean but also the variance of the
predictions.

L(θ) = 1

N

N∑
i=1

1

σ(~xi)2
|| ~yi − f (~xi) ||2 +logσ(~xi)2 (4)

Uncertainty in the model also referred to as Epistemic uncertainty.
It can be caused by model misspecification (a wrong parametric
family), error in the estimation of the model’s parameters when
modeling, exposing the model to novel examples and any other sys-
tematic error in the model. This can be estimated by Dropout at test
time. It produces different possible outputs that can be thought to
be produced by different sub-networks which would imply the vari-
ance of the model. A neural network can also be thought of as an
ensemble method for reducing the variance of prediction by using a
number of unbiased models.

Scenario Forecasting
The roll-forward forecasting produces biased results as a result of
the model’s ignorance caused by treating forecast values as new ob-
servations. To tackle this issue scenario forecasting was used which
also enabled the model to produce different forecast trajectories as
another informative form of forecasting. Since the forecasts were
probabilistic, one could sample from the forecast distribution and
the sampled values could be used instead as the next value in the
input sequence forecasting for all possible alternative futures.

Demonstration of constructing trajectories with scenario forecasting. On the top,
possible samples drew from the forecast distribution (denoted by red) in order to
perform scenario forecasting on these samples (denoted by blue). On the bottom,
generated trajectories as a result of scenario forecasting demonstrated. Scenarios
reveal possible multimodality in the data. Each of these scenarios forecasts per-
formed as part of a MCDO simulation and so were averaged over all to obtain the
final result as shown Figure 5

Results
All results obtained by evaluation on 20 different splits of the val-
idation set. Input size for the Synthetic data was 24 and of 4 for
the GEFCom’14 with forecast horizon of size 48. Results of 5
variation of each model per each architecture are being reported
here. 4 of which correspond to the Bayesian models and to a non-
Bayesian model (old). The Bayesian models are denoted as AL for
Aleatoric, the EP for Epistemic, the ALEP for Aleatoric+Epistemic,
and SFALEP for the Scenario Forecast+ALEP. Finally, the proba-
bilistic baseline denoted by QNaive.

NCRSP results obtained on the GEFCom’14 Dataset

NCRPS Univariate with Exogenous Variables
Architectures MLP GRU MLP GRU
QNaive 0.211± 0.103 0.211± 0.103 0.209± 0.092 0.209± 0.092
AL 0.215± 0.157 0.218± 0.155 0.167± 0.121 0.169± 0.150
EP 0.247± 0.197 0.263± 0.186 0.196± 0.154 0.157± 0.141
ALEP 0.208± 0.147 0.217± 0.150 0.166± 0.097 0.159± 0.137

SFALEP 0.203± 0.149 0.183± 0.097 0.173± 0.104 0.144± 0.099

Results obtained on the Synthetic Dataset

Metrics CRPS MSE
Architectures MLP GRU MLP GRU

old N/A N/A 0.033± 0.020 0.035± 0.021
QNaive 0.163± 0.055 0.163± 0.055 0.082± 0.014 0.082± 0.014
AL 0.116± 0.100 0.103± 0.105 0.033± 0.019 0.030± 0.024
EP 0.131± 0.106 0.132± 0.111 0.033± 0.019 0.035± 0.022
ALEP 0.112± 0.095 0.103± 0.104 0.033± 0.019 0.030± 0.024
SFALEP 0.107± 0.086 0.098± 0.085 0.034± 0.019 0.031± 0.024

Calibration of models evaluated on GEFCom data with exogenous variables

Forecast with RNN on Synthetic data

Forecast with RNN on GEFCom data with exogenous variables

Conclusions
Successful application of the method proposed in [6] for probabilis-
tic forecasting. A naive baseline proposed by us which helps with
diagnosis and it is a good baseline for evaluation of models cali-
bration. The proposed model, SFALEP, improved the results both
from the perspective of performance, and calibration. RNN was
more effective especially in the case of the real dataset with multi-
ple variables involved in the forecasting.
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