Problem 1: Quantum Key Exchange

Alice and Bob perform the following quantum key distribution protocol:

- Alice chooses random bits $a_1, \ldots, a_n \in \{0,1\}$ and $b_1, \ldots, b_n \in \{0,1\}$. For $i = 1, \ldots, n$, Alice prepares $|\Psi_i\rangle := |\Psi_{a_i b_i}\rangle$ according to the following table:

| $|\Psi_{00}\rangle$ | $|0\rangle$ |
|---------------------|------------|
| $|\Psi_{10}\rangle$ | $|1\rangle$ |
| $|\Psi_{01}\rangle$ | $|+\rangle$ |
| $|\Psi_{11}\rangle$ | $|-\rangle$ |

(In other words, b_i specifies the basis in which a_i is encoded.)

- Then Alice sends $|\Psi_1\rangle \otimes \cdots \otimes |\Psi_n\rangle$ to Bob (over an insecure quantum channel that is under the control of the adversary Eve).

- When Bob has received all the n qubits, he acknowledges receipt over an authenticated (but public, i.e., not secret) channel.

- After getting the acknowledgement from Bob, Alice sends all bits b_i to Bob, and for checking, she also sends a_i to Bob for $i = 1, \ldots, \frac{n}{2}$ (we assume n to be even).

- Then Bob measures each of the qubits he received in the basis given by the b_i. Let the outcomes be \tilde{a}_i.

- Bob checks whether $a_i = \tilde{a}_i$ for all $i = 1, \ldots, \frac{n}{2}$. If so, he sends OK to Alice over the authenticated channel and outputs the key $\tilde{a}_{\frac{n}{2}+1} \ldots \tilde{a}_n$, otherwise he sends ABORT and aborts.

- When Alice receives OK, she outputs the key $a_{\frac{n}{2}+1} \ldots a_n$. If she receives ABORT, she aborts.

(a) Argue whether this protocol could be realised using today’s technology.

(b) Break the protocol.

(c) Argue how the protocol security could be improved. (But do not try to prove it!)
Problem 2: Eve’s advantage

Assume that in a (bad) QKD protocol, some adversary Eve succeeds in doing the following: The protocol aborts with probability \(\frac{2}{3} \). In the cases where the protocol does not abort, the key that is chosen is always 0 \ldots 0 (\(n \) bits, \(n > 2 \)). For simplicity, assume that Eve’s state is empty after the protocol execution (that is, Eve’s quantum state consists of zero qubits, and density operators \(\rho_E \) describing Eve’s state can be omitted from all formulas).

(a) Describe the state \(\rho_{\text{Real}}^{\text{ABE}} \). What is the value of

\[
\text{TD}(\rho_{\text{Real}}^{\text{ABE}}, S_{\text{Ideal}}) := \max_{\rho_{\text{Ideal}}^{\text{ABE}} \in S_{\text{Ideal}}} \text{TD}(\rho_{\text{Real}}^{\text{ABE}}, \rho_{\text{Ideal}}^{\text{ABE}})
\]

(for the particular Eve described above)?

(b) Show that the protocol is not \(\varepsilon \)-secure for \(\varepsilon = \frac{1}{4} \).