1 IP and perfect soundness

Let IP' be the class of languages that have interactive proofs with perfect soundness and perfect completeness (i.e., in the definition of IP, we replace $2/3$ by 1 and $1/3$ by 0).

Show that $\text{IP}' \subseteq \text{NP}$.

You get bonus points if you only use the perfect soundness (not the perfect completeness).

Note: In the practice we will show that $\text{dIP} = \text{NP}$ where dIP is the class of languages that has interactive proofs with deterministic verifiers. You may use that fact.

Hint: What happens if we replace the proof system by one where the verifier always uses 0 bits as its randomness? (More precisely, whenever V would use a random bit b, the modified verifier V_0 choses $b = 0$ instead.) Does the resulting proof system still have perfect soundness? Does it still have perfect completeness?

Solution. Let $L \in \text{IP}'$. We want to show that $L \in \text{NP}$. Since $\text{dIP} = \text{NP}$, it is sufficient to show that $L \in \text{dIP}$. I.e., we need to show that there is an interactive proof for L with a deterministic verifier.

Since $L \in \text{IP}'$, there is an interactive proof (P, V) for L with perfect soundness and completeness. Let V_0 be the verifier that behaves like V, but whenever V uses a random bit, V_0 uses 0. Note that V_0 is deterministic.

We show that (P, V_0) still has perfect soundness and completeness. Let $x \in L$. Then $\Pr[\langle \text{out}_V \langle V, P \rangle(x) = 1 \rangle] = 1$. That means, for any randomness r that the verifier uses, its output is 1. In particular, for $r = 0$. Thus $\Pr[\text{out}_V \langle V_0, P \rangle(x) = 1] = 1$. Thus (P, V_0) has perfect completeness.

Let $x \notin L$. Then $\Pr[\langle \text{out}_V \langle V, P \rangle(x) = 0 \rangle] = 1$. That means, for any randomness r that the verifier uses, its output is 0. In particular, for $r = 0$. Thus $\Pr[\text{out}_V \langle V_0, P \rangle(x) = 0] = 1$. Thus (P, V_0) has perfect soundness.

Thus (P, V_0) is an interactive proof for L with deterministic V_0. Hence $L \in \text{dIP} = \text{NP}$. Hence $L \in \text{NP}$.

If we want to show the same result without requiring perfect completeness, we proceed as follows: Let (P, V) be an interactive proof for L as before. Since (P, V) has completeness, for any $x \in L$, we have $\Pr[\langle \text{out}_V \langle V, P \rangle(x) = 1 \rangle] > 0$. That implies that there exists a sequence of messages m_1^x, \ldots, m_k^x and a sequence of random bits r^x such that V, when running with random bits r^x, and receiving messages m_1^x, \ldots, m_k^x, returns 1.
Let \(P' \) be the prover that sends \(r^x, m^x_1, \ldots, m^x_k \). Let \(V' \) be the verifier that in the first round receives \(r \) and then behaves like \(V \) with randomness \(r \) for the remaining \(k \) rounds. Note that \(V' \) is deterministic.

\((P', V')\) has perfect completeness: By construction, the messages \(r^x, m^x_1, \ldots, m^x_k \) sent by \(P' \) make \(V' \) accept.

\((P', V')\) has perfect soundness: If \(x \not\in L \), then \(\Pr[\text{out}_V(V', P^*)(x) = 0] = 1 \). That means, for any randomness \(r \) that the verifier \(V' \) uses, its output is 0. When \(V \) is run with the randomness \(r \) that \(V' \) receives (no matter which randomness the malicious prover \(P^* \) sends). Thus \(\Pr[\text{out}_V(V', P^*)(x) = 0] = 1 \). Thus \((P, V')\) has perfect soundness.

Hence we have an interactive proof \((P', V')\) for \(L \) with deterministic \(V' \). Thus \(L \in \text{dIP} = \text{NP} \).

2 Interactive proof for invertible matrices

Let

\[L := \{(M, p) : M \text{ is an invertible } n \times n \text{ matrix over } \text{GF}(p)\} \]

That is \((M, p) \in L \) if \(M \) is a square matrix and there exists a matrix \(M^{-1} \) such that \(MM^{-1} = I \mod p \). (\(I \) denotes the identity matrix.)

Some useful facts:

- The best known algorithm for matrix multiplication uses \(\Omega(n^{2.3728639\ldots}) \) arithmetic operations over \(\text{GF}(p) \) for \(n \times n \) matrices.
- To the best of my knowledge, the fastest algorithm for deciding whether a matrix is invertible runs in deterministic polynomial-time but also runs uses \(\Omega(n^{2.3728639\ldots}) \) arithmetic operations over \(\text{GF}(p) \).
- Multiplying an \(n \times n \) matrix with an \(n \)-dimensional vector takes \(O(n^2) \) operations over \(\text{GF}(p) \). (To compute \(y = Mx \), simply compute \(y_i = \sum_j M_{ij}x_j \) for all \(i \).)

(a) Design a 0-round interactive proof for \(L \) with perfect completeness and perfect soundness.

Note: “0-round” is not a typo.

Solution. Our 0-round protocol has no interaction. On input \((M, p)\), the verifier \(V \) decides whether there is an inverse of \(M \) over \(\text{GF}(p) \) (there is a deterministic polynomial-time algorithm for that). If so, \(V \) outputs \(\text{out}_V := 1 \) else \(\text{out}_V := 0 \). (If \(M \) is not a square matrix over \(\text{GF}(p) \), \(V \) also outputs 0.)

If \((M, p) \in L \), then \(M \) is invertible. So \(V \) will output 1 with probability 1, hence we have perfect completeness.

If \((M, p) \notin L \), then \(M \) is not invertible. So \(V \) will output 1 with probability 0, hence we have perfect soundness. (This holds for any prover \(P^* \), because the verifier does not even interact with \(P^* \).)

(In fact, reasoning along the same lines shows that \(\text{IP}[0] = \text{BPP} \).)
(b) Design a 2-round interactive proof for L with perfect completeness and with soundness $1/p$ where the verifier V makes only $O(n^2)$ arithmetic operations and where each message consists only of n elements of $GF(p)$. (I.e., the communication complexity is $O(n \log p)$.) Prove the completeness of the interactive proof.

Note: The solution from (a) does not work here because the verifier takes more than $O(n^2)$ operations. Also, a natural proof would be for the prover to just send M^{-1}, and the verifier checks whether $M^{-1}M = I$. But that takes $\Omega(n^2)$ operations.

Hint: If M is not invertible, for any x, how many x' with $Mx = Mx'$ are there? And be inspired (but not too closely) by the graph non-isomorphism proof.

Solution. The interactive proof (P,V) is the following:

- The verifier V picks a uniformly random $x \in GF(p)^n$ and sends $y := Mx$. (Computing y takes $O(n^2)$ operations.)
- The (honest) prover P returns $x' := M^{-1}y$.
- V checks whether M is indeed a square matrix over $GF(p)$ and whether $x = x'$.

If so V accepts (outputs 1).

This interactive proof has perfect completeness: If M is invertible, $M^{-1}M = I$, hence $x' = M^{-1}y = M^{-1}Mx = Ix = x$. Thus the verifier accepts with probability 1.

(c) Show that the protocol from (b) has soundness $1/p$.

Hint: What is the size of the kernel of M? Show that this implies that there are at least p different values x' with $Mx = Mx'$?

Solution. To show soundness $1/p$, we need to show that if $\langle M, p \rangle \notin L$, then the verifier accepts with probability at most $1/p$, for any prover P^*. Thus, assume that $\langle M, p \rangle \notin L$. That is, M is not invertible over p. Let $\ker M$ denote the kernel of M. Since M is not invertible, $\ker M \neq \{0\}$. Since $\ker M$ is a vector space over $GF(p)$, its size is a power of p. Hence $t := |\ker M| \geq p$.

Hence, for any $y \in GF(p)^n$, there are exactly t vectors x with $y = Mx$. Since x is chosen uniformly random by V, each of those x with $y = Mx$ has probability $1/t$ of being the one chosen by V, given that V sends y. Thus, the prover guesses x with probability at most $1/t$. Hence the verifier accepts with probability at most $1/t \leq 1/p$.