Problem 1: Big languages in \mathbf{P}/poly

(a) We saw in the lecture that

$$\text{UHALT} = \{1^n : n = \langle \alpha, x \rangle, M_\alpha(x) \text{ halts} \}$$

is in \mathbf{P}/poly. Show that UHALT is undecidable.

Note: There are two ways to do it (or more). One is by reducing to HALT, the other is by redoing the proof of undecidability of HALT. The reference solution will use the first way, but the second way is fine as well.

Solution. We show it by reduction to HALT. Assume that UHALT is decidable. That is, there is a TM M (not necessarily polynomial-time) such that $\forall x. M(x) = 1 \iff x \in \text{UHALT}$.

Let $M'(\alpha, x)$ do the following: Set $n := \langle \alpha, x \rangle$, run $b := M(1^n)$, return b. Note that M' may take much more runtime than M because it runs M with an exponentially larger input. But that does not matter here, because we are not concerned with the runtime of the TMs.

We have for all α, x: $M'(\alpha, x) = 1$ iff $M(1^n) = 1$ with $n := \langle \alpha, x \rangle$ iff $1^n \in \text{UHALT}$ iff $M_\alpha(x)$ halts iff $\langle \alpha, x \rangle \in \text{HALT}$. Thus M' decides HALT. Hence HALT is decidable. But we know from the lecture that HALT is undecidable. Thus the assumption that UHALT is decidable was wrong. Thus UHALT is undecidable.

(b) Show that there is a decidable language L such that $L \in \mathbf{P}/\text{poly}$ but $L \notin \mathbf{P}$.

Hint: Show that there exists a decidable language with $L' \notin \text{DTIME}(2^{2|x|^2})$. Construct the unary variant of L': $L := \{1^n : n = x, x \in L' \}$. Show that L is decidable, show that $L \in \mathbf{P}/\text{poly}$ (think of UHALT), and that $L \notin \mathbf{P}$ (assume that $L \in \mathbf{P}$, and from that construct a TM deciding L' in too little time).

Solution. The time hierarchy theorem implies that there exists a language $L' \notin \text{DTIME}(2^{2|x|^2})$ but $L' \in \text{DTIME}(T')$ for some larger T'. In particular, L' is decidable.
Let L be the unary variant of L'. That is,

$$L := \{1^n : n = x, x \in L'\}.$$

Then L is decidable: given 1^n, we simply run $L'(n)$.

Also we have that $L \in \text{P/poly}$. This is analogous to showing that UHALT $\in \text{P/poly}$: Let $C_n(x) := x_1 \wedge \cdots \wedge x_n$ iff $n \in L'$, and $C_n(x) = 0$ otherwise. Then C_n form a polynomial-size circuit family that decides L.

Assume that $L \in \text{P}$. Then there is a polynomial p and a TM M that decides L in time $p(|x|)$. We construct the Turing machine M': Given input x, it runs $b := M(1^n)$ with $n := x$ and returns b. Since M decides L, M' decides L'.

The running time of M' is: $O(p(2^{|x|}))$ because it runs M with an input 1^n of lengths $2^{|x|}$. Since p is a polynomial, $O(p(2^{|x|})) = O((2^{|x|}c) \subseteq O(2^{|x|})$ for some constant $c > 0$. Thus M' runs in time $O(2^{|x|})$ and decides L', in contradiction to the assumption that $L' \notin \text{DTIME}(2^{|x|})$.

Problem 2: Circuit lower bounds: Parity

Let

$$\text{PARITY} := \{x : x \text{ has an odd number of 1's}\}.$$

(Or expressed differently: $x \in \text{PARITY}$ iff $x_1 \oplus x_2 \oplus \cdots \oplus x_n = 1$.)

We will show a lower bound on the circuit complexity of PARITY. Namely, we show that constant-depth circuits cannot compute PARITY.

For this, we first establish a bit of notation:

- The **height** of a node ν in a circuit C is the longest path from ν to any leaf. That is, leaves (variables) have height 0. And an inner node has the maximum height of its children, plus 1.

- The **depth** of a circuit is the height of its root.

- Given a polynomial p over the real numbers with n variables, and a Boolean function $f : \{0, 1\}^n \rightarrow \{0, 1\}$, we say that p **computes** f iff $\forall x_1, \ldots, x_n \in \{0, 1\}. p(x_1, \ldots, x_n) = f(x_1, \ldots, x_n)$. (Note: we do not care what p evaluates to when it gets inputs different from 0, 1.)

- We say p computes a node ν in a circuit C if p computes the function f evaluated by the node ν. (That is, for any assignment to the variables x_1, \ldots, x_n of C, the node ν has a well-defined value $\in \{0, 1\}$, so the node evaluates some function f of x_1, \ldots, x_n. We want p to compute that function.)

- The **degree** of a multivariate polynomial p is the largest sum of the exponents in any monomial. (E.g., $6x_1x_2x_3^2 + x_2x_5$ has degree 4 from the first monomial.)
• We call a polynomial \textit{multilinear} if no variable occurs with an exponent greater than 1. (That is, $6x_1x_2x_3 + x_2x_5$ is multilinear, but $6x_1x_2x_3^2 + x_2x_5$ is not multilinear.)

We now develop a proof that \textsc{parity} cannot be computed by constant-depth circuits:

(a) Show: For each leaf ν of a circuit C, there is a polynomial p of degree ≤ 1 that computes ν.

\textbf{Solution.} Since ν is a leaf, ν is a variable, say x_i. Then ν evaluates the function $f(x_1,\ldots,x_n) := x_i$. Then the polynomial $p := x_i$ computes f and therefore p computes ν. And p has degree 1.

(b) Show: For each node ν of height h in a circuit C, there is a polynomial of degree 2^h that computes ν.

\textbf{Hint:} Induction over the height, using (a). Express each AND/OR/NOT node as a polynomial of its children’s values, and compute the degree of the polynomial when plugging in the inputs. Remember that all nodes have fan-in at most 2.

\textbf{Solution.} For $h = 0$, this follows directly from (a). We do induction over h, assume it holds for all heights smaller than h. We show the statement for height h. Fix a node ν of height $h+1$. Then all children ν_i of ν have height smaller than h. Thus by induction hypothesis, there are polynomials p_i of degree $\leq 2^{h-1}$ such that p_i computes f_i where f_i is the function computed by ν_i. Let f be the function computed by ν. We abbreviate x_1,\ldots,x_n as \bar{x}. We distinguish three cases, depending on whether ν is AND/OR/NOT:

- $\nu =$ AND: For all $\bar{x} \in \{0,1\}^n$, $f(\bar{x}) = f_1(\bar{x}) \land f_2(\bar{x}) = f_1(\bar{x}) \cdot f_2(\bar{x}) = p_1 \cdot p_2 =: p$. Thus p computes f and therefore p computes ν. And p has degree $\leq 2^{h-1} + 2^{h-1} = 2^h$ because when multiplying polynomials, the degrees add up.
- $\nu =$ OR: For all $\bar{x} \in \{0,1\}^n$, $f(\bar{x}) = f_1(\bar{x}) \lor f_2(\bar{x}) = f_1(\bar{x}) + f_2(\bar{x}) - f_1(\bar{x}) \cdot f_2(\bar{x}) = p_1 + p_2 - p_1 p_2 =: p$. Thus p computes ν. And p has degree $\leq 2^{h-1} + 2^{h-1} = 2^h$.
- $\nu =$ NOT: For all $\bar{x} \in \{0,1\}^n$, $f(\bar{x}) = \neg f_1(\bar{x}) = 1 - f_1(\bar{x}) = 1 - p_1 =: p$. Thus p computes ν. And p has degree $\leq 2^{h-1} \leq 2^h$.

Thus in each case, there is a polynomial p of degree $\leq 2^h$ that computes ν.

(c) \textbf{[Bonus points, tricky]} Let $f_n(x_1,\ldots,x_n) := x_1 \oplus \cdots \oplus x_n$. Assume that p_n is a multilinear polynomial that computes f_n. Show that p_n contains the monomial $\alpha x_1 x_2 \ldots x_n$ (with some coefficient $\alpha \neq 0$).

\textbf{Hint:} Show it for $n = 1$ first. Then do induction. Express the polynomial p_n as $p_n = x_n q + r$. Relate the polynomials r, $1 - (q + r)$, $1 - (q + r) + r$, and finally $(1 - q)/2$ to f_{n-1}. Show that q contains $\alpha x_1 \ldots x_{n-1}$ using induction hypothesis.
Solution. For \(n = 1 \), \(f_n = x_1 \). Since \(p_n \) is a multilinear polynomial in one variable, it must be of the form \(ax + b \). Only with \(a = 1 \) and \(b = 0 \) we have that \(p_n(x_1) = f_n(x_1) \) for all \(x_1 \in \{0, 1\} \). Thus for \(n = 1 \), \(p_n = x_1 \) and thus contains the monomial \(x_1 \). So the statement holds for \(n = 1 \).

Assume the statement holds for \(n - 1 \). We show it for \(n \geq 2 \). Since \(p_n \) is multilinear, it does not contain \(x_n \) with an exponent greater than 1. Hence \(p_n \) can be written as \(p_n = x_n q + r \) where \(q, r \) are multilinear polynomials over \(x_1, \ldots, x_{n-1} \). For all \(x_1, \ldots, x_{n-1} \in \{0, 1\} \), we have

\[
f_{n-1}(x_1, \ldots, x_{n-1}) = f_n(x_1, \ldots, x_{n-1}, 0) \overset{(1)}{=} p_n(x_1, \ldots, x_{n-1}, 0) = 0 \cdot q + r = r. \tag{1}
\]

Here \((\ast) \) uses that \(p_n \) computes \(f_n \). Hence \(r \) computes \(f_{n-1} \).

We further have

\[
f_{n-1}(x_1, \ldots, x_{n-1}) = 1 - f_n(x_1, \ldots, x_{n-1}, 1) \overset{(\ast)}{=} 1 - p_n(x_1, \ldots, x_{n-1}, 1) = 1 - (1 \cdot q + r) = 1 - (q + r). \tag{2}
\]

Here \((\ast) \) uses that \(p_n \) computes \(f_n \). Hence \(1 - (q + r) \) computes \(f_{n-1} \).

Thus \(1 - (q + r) + r \) computes \(2f_{n-1} \). Since \(1 - (q + r) + r = 1 - q \), we have that \(1 - q \) computes \(2f_{n-1} \) and thus \((1 - q)/2 \) computes \(f_{n-1} \). By induction hypothesis, this implies that \((1 - q)/2 \) contains the monomial \(\alpha' x_1 \ldots x_{n-1} \) for some \(\alpha' \neq 0 \).

Thus \(q \) contains the monomial \(\alpha x_1 \ldots x_{n-1} \) with \(\alpha := -2 \alpha' \neq 0 \). Thus \(x_n q \) contains \(\alpha x_1 \ldots x_n \). And hence \(p_n = x_n q + r \) contains \(\alpha x_1 \ldots x_n \). \(r \) cannot cancel out that monomial, because \(r \) contains only the variables \(x_1, \ldots, x_{n-1} \).

Since \(p_n \) was an arbitrary multilinear polynomial computing \(f_n \), the statement follows.

(d) Let \(f_n(x_1, \ldots, x_n) := x_1 \oplus \cdots \oplus x_n \). Assume that \(p_n \) is a polynomial that computes \(f_n \). Show that \(p_n \) has degree at least \(n \).

Hint: Transform \(p_n \) into a multilinear polynomial by removing all exponents from \(p_n \). Show that the resulting polynomial still computes \(f_n \). Then use (\ref{eq:monomial1}).

Solution. Let \(\hat{p}_n \) be the polynomial that results from replacing all \(x_i^e \) by \(x_i \) for all exponents \(e > 1 \). Then \(\hat{p}_n \) is multilinear. Also, the degree of \(p_n \) is at least as large as that of \(\hat{p}_n \). And for all \(x_1, \ldots, x_n \in \{0, 1\} \) we have \(\hat{p}_n = p_n \). (Because \(x^e = x \) for \(x \in \{0, 1\} \).) Thus, since \(p_n \) computes \(f_n \), \(\hat{p}_n \) computes \(f_n \). By (\ref{eq:monomial1}), \(\hat{p}_n \) then contains the monomial \(\alpha x_1 \ldots x_n \). Thus \(\hat{p}_n \) has degree at least \(n \). Thus \(p_n \) has degree at least \(n \).

(e) Show that no circuit \(C_n \) of depth \(d < \log n \) with \(n \) variables decides \textsc{parity}.

Hint: Use (\ref{eq:monomial1}) and (\ref{eq:monomial2}).

\(^1\)The last two steps are the reason why we cannot do the same proof for polynomials over \(\text{GF}(2) \) instead of the reals. Over \(\text{GF}(2) \), \((1 - q)/2\) is undefined and \(2 \alpha' = 0 \). In fact, over \(\text{GF}(2) \) there is a polynomial of degree 1 that computes \(f_n \), namely \(p_n := x_1 + \cdots + x_n \).
Solution. Assume that C_n decides \textsc{Parity}. That is, C_n computes $f_n(x_1, \ldots, x_n) := x_1 \oplus \cdots \oplus x_n$. By (b), there is a polynomial p_n that computes the root node of C_n, and p_n has degree at most 2^d. (Since the root node has height d.) Since the root node evaluates f_n, p_n computes f_n. By (d), this means that p_n has degree at least n. Thus $2^d \geq n$, hence $d \geq \log n$. \hfill \textit{.solution}