You will need 50% of all homework points to qualify for the exam. (That is, if you get at least 50%, your final grade will be the exam grade. And if you do not get 50%, you do not pass the course.)

You may hand in your solutions in person or by email. If you submit by email, either scan a handwritten solution or typeset your solution readably. I do not consider ASCII formulas readable.

When submitting, indicate your name and your matriculation number. On your first submission, please also indicate a password, this password will be needed for accessing the solutions and your points online.

Problem 1: Addition on a Turing machine

Construct a Turing machine that does the following: Given input $a|b$ (where a and b are unsigned integers in binary encoding and $|$ is a special symbol), it outputs the sum of a and b (in binary encoding).

Explicitly give the set Γ of symbols (containing at least $\delta, \square, 0, 1, |$), the set of states Q, and the transition function δ.

You do not need to prove that your TM does add correctly, but please add sufficient comments to make the workings understandable.

Notes: Input $a|b$ means that the input tape contains $\delta a | b \square \square \ldots$. You can choose whether your integers are encoded lsb-first or msb-first, but make your choice explicit and stick to it.

Solution. We encode integers lsb-first.

Set of states: $Q = \{q_{\text{start}}, q_{\text{rewind}}, q_{\text{add}}, q_{\text{carry}}, q_{\text{halt}}\}$.
Set of symbols: $\Gamma = \{\delta, \square, 0, 1, |\}$.
Number of tapes: $k = 2$. (Input and output tape.)
Transition functions δ: See Figure 1.

Problem 2: NP-problems

Out of the following five problems, three are in NP. The other two are not (or at least, science cannot currently show that they are).

- Identify those three.
<table>
<thead>
<tr>
<th>q_{in}</th>
<th>$\gamma_{1_{in}}$</th>
<th>$\gamma_{2_{in}}$</th>
<th>q_{out}</th>
<th>$\gamma_{2_{out}}$</th>
<th>m_1</th>
<th>m_2</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_{start}</td>
<td>\rhd</td>
<td>*</td>
<td>q_{start}</td>
<td>\rhd</td>
<td>R</td>
<td>R</td>
<td>Move to start of a. Also mark the first cell of the output tape with \rhd for later rewinding.</td>
</tr>
<tr>
<td>q_{start}</td>
<td>$x \in {0, 1}$</td>
<td>*</td>
<td>q_{start}</td>
<td>x</td>
<td>R</td>
<td>R</td>
<td>Copy a onto output tape.</td>
</tr>
<tr>
<td>q_{rewind}</td>
<td>*</td>
<td>$x \in {0, 1}$</td>
<td>q_{rewind}</td>
<td>x</td>
<td>S</td>
<td>L</td>
<td>After copy, input head is at start of b. Output head starts rewinding.</td>
</tr>
<tr>
<td>q_{rewind}</td>
<td>*</td>
<td>\rhd</td>
<td>q_{add}</td>
<td>\Box</td>
<td>S</td>
<td>R</td>
<td>Rewinding done. Removing the marker \rhd from output tape. Input head is now at start of b, output head at start of a. Adding can begin.</td>
</tr>
<tr>
<td>q_{add}</td>
<td>0 or \Box</td>
<td>0</td>
<td>q_{add}</td>
<td>0</td>
<td>R</td>
<td>R</td>
<td>Add current bit of a and b. Case: both are 0. Thus: write 0 to output. Move to next bit. \Box is interpreted as 0 as long as we are still adding.</td>
</tr>
<tr>
<td>q_{add}</td>
<td>0 or \Box</td>
<td>1</td>
<td>q_{add}</td>
<td>1</td>
<td>R</td>
<td>R</td>
<td>Like in the step before.</td>
</tr>
<tr>
<td>q_{add}</td>
<td>1 or \Box</td>
<td>0</td>
<td>q_{add}</td>
<td>1</td>
<td>R</td>
<td>R</td>
<td>Case: $0+1$.</td>
</tr>
<tr>
<td>q_{add}</td>
<td>1</td>
<td>1</td>
<td>q_{carry}</td>
<td>0</td>
<td>R</td>
<td>R</td>
<td>Case: $1+0$. Thus, the added bit is 0, and we have to add a carry bit in the next step. Thus we go into state q_{carry}.</td>
</tr>
<tr>
<td>q_{carry}</td>
<td>0 or \Box</td>
<td>0 or \Box</td>
<td>q_{add}</td>
<td>1</td>
<td>R</td>
<td>R</td>
<td>Case $0+0$ with carry. Thus output is 1. No carry for next step.</td>
</tr>
<tr>
<td>q_{carry}</td>
<td>0 or \Box</td>
<td>1</td>
<td>q_{carry}</td>
<td>0</td>
<td>R</td>
<td>R</td>
<td>Case $0+1$ with carry. Output is 0, need carry in next step.</td>
</tr>
<tr>
<td>q_{carry}</td>
<td>1</td>
<td>0 or \Box</td>
<td>q_{carry}</td>
<td>0</td>
<td>R</td>
<td>R</td>
<td>Case $1+0$ with carry. Output is 0, need carry in next step.</td>
</tr>
<tr>
<td>q_{carry}</td>
<td>1</td>
<td>1</td>
<td>q_{carry}</td>
<td>1</td>
<td>R</td>
<td>R</td>
<td>Case $1+1$ with carry. Output is 1, need carry in next step.</td>
</tr>
<tr>
<td>q_{add}</td>
<td>\Box</td>
<td>\Box</td>
<td>q_{halt}</td>
<td>\Box</td>
<td>S</td>
<td>S</td>
<td>Both a and b are finished. No carry. Addition complete.</td>
</tr>
</tbody>
</table>

Figure 1: Transition function δ of the addition Turing machine. $q_{in}, \gamma_{1_{in}}, \gamma_{2_{in}}$ is the input to δ, consisting of state q_{in}, symbol $\gamma_{1_{in}}$ read on tape 1, symbol $\gamma_{2_{in}}$ read on tape 2. $q_{out}, \gamma_{2_{out}}, m_1, m_2$ is the output of δ, consisting of the new state q_{out}, the symbol $\gamma_{2_{out}}$ written to tape 2 (tape 1 is the read-only input tape), and the movements m_1, m_2 of the heads on tapes 1 and 2 (R=right, L=left, S=stay). In the input fields, $*$ stands for ‘does not matter’ (wildcard). Only the part of the value table of δ that is relevant for the execution is described.
• Show that they are in \textbf{NP}. That is, say what the Turing machine \(M \) from the
definition of the class \textbf{NP} does, say what \(u \) is. You do not need to “program” \(M \), it
is sufficient to say what \(M \) does.\footnote{E.g., like “\(M(x, w) \) outputs 1 iff \(|x| = |w|\)”.
}\footnote{In Arora-Barak, \textbf{SAT} is defined somewhat differently, namely as \textbf{SAT} := \{ \(B \) : \(B \) is a satisfiable Boolean formula in conjunctive normal form (CNF)\}.}

• For the remaining two, explain why you cannot show that they are in \textbf{NP}. (No
formal proof is needed. Just an explanation of the difficulties.)

(a) \textbf{SAT} := \{ \(B \) : \(B \) is a satisfiable Boolean formula\}\footnote{A Boolean formula is a formula
with variables \(x_1, x_2, x_3, \ldots \) and the operations \(\land, \lor, \neg \). A Boolean formula is satisfiable
if the variables \(x_1, x_2, \ldots \) can be assigned values true/false so that the formula
evaluates to true.} A Boolean formula is a formula

\begin{align*}
\exists y_1, \ldots, y_m \in \mathbb{Z}. & p_1(y_1, \ldots, y_m) = \cdots = p_n(y_1, \ldots, y_m) = 0.
\end{align*}

Here \(p_1, \ldots, p_n \) are polynomials in \(m \) variables with integer coefficients. (Both \(n, m \)
can vary.)

(b) \textbf{PALIN} := \{ \(x \) : \(x \) is a palindrome\}.

(c) \textbf{EQ}_1 := \{ (p_1, \ldots, p_n) : \exists x_1, \ldots, x_m \in \mathbb{Z}. p_1(x_1, \ldots, x_m) = \cdots = p_n(x_1, \ldots, x_m) = 0 \}.

Here \(p_1, \ldots, p_n \) are polynomials in \(m \) variables with integer coefficients. (Both \(n, m \)
can vary.)

(d) \textbf{EQ}_2 := \{ (p_1, \ldots, p_n, b_1, \ldots, b_n) : \exists x_1, \ldots, x_m \in \mathbb{Z} \text{ s.t. } p_1(x_1, \ldots, x_m) = \cdots = p_n(x_1, \ldots, x_m) = 0 \land |x_1| \leq b_1, \ldots, |x_m| \leq b_m \}.

Here \(p_1, \ldots, p_n \) are polynomials in \(m \) variables with integer coefficients. (Both \(n, m \)
can vary.)

(e) \textbf{co-SAT} := \{ \(B \) : \(B \) is not a satisfiable Boolean formula\}.

Solution.

• \textbf{SAT} \in \textbf{NP}. For a satisfiable formula \(B \), the certificate \(u \) is an assignment of
variables such that \(B(u) = 1 \). The length of \(u \) is one bit per variable, and each
variable needs to occur in \(B \), hence the length of \(u \) is polynomially-bounded in the
length of \(B \). \(M(B, u) \) computes \(B(u) \).

• \textbf{PALIN} \in \textbf{NP}. Actually, we already know that \textbf{PALIN} \in \textbf{P} \subseteq \textbf{NP}. But we can also
show it directly: \(u \) is the empty word, and \(M(x, u) \) outputs 1 if \(x \) is a palindrome.

• \textbf{EQ}_1 \notin \textbf{NP}. One might first think that it is in \textbf{NP} due to the following argument:
\(u \) is the list of integers that are assigned to \(x_1, \ldots, x_n \). Then \(M((p_1, \ldots, p_n), u) \) just
checks whether \(p_1(x_1, \ldots, x_m) = \cdots = p_n(x_1, \ldots, x_m) = 0 \). However, in general
it could be that a solution \(x_1, \ldots, x_n \) contains extremely large integers. Thus the
length of the certificate \(u \) will not necessarily be polynomially bounded in the length
of \((p_1, \ldots, p_n) \). But a polynomially-bounded certificate is required for showing that
\textbf{EQ}_1 \notin \textbf{NP}. In fact, it is known that \textbf{EQ}_1 is undecidable (like the Halting Problem).

Equations like in the definition of \textbf{EQ}_1 are called Diophantine equations, solving
them was Hilbert’s tenth problem, and Matiyasevich’s theorem that even whether a
single Diophantine equation has a solution is undecidable.
• **EQ₂ ∈ NP.** Here the certificate \(u \) consists of the solution \(x_1, \ldots, x_m \). And \(M((p_1, \ldots, p_n, b_1, \ldots, b_m), u) \) checks whether \(p_1(x_1, \ldots, x_m) = \cdots = p_n(x_1, \ldots, x_m) = 0 \) and \(|x_1| \leq b_1, \ldots, |x_m| \leq b_m \). Note that in this case, the length of \(u \) is polynomially-bounded because each \(x_i \) is at most as long as the corresponding \(b_i \).

• **co-SAT** is not known to be in **NP.** In fact, it is easy to give a certificate that \(B \) is a satisfiable Boolean formula, but to show that \(B \) is not satisfiable, one needs to find a certificate that shows that for all inputs, \(B \) evaluates to 0. It is not clear how one would do that. It is widely believed that **coSAT \(\not\in \) NP** (but there is no proof of that fact).