Problem 1: Non-binary coins

Our definition of PTM gives the machine the possibility to pick random bits (i.e., do something with probability 1/2). But what if we want to do something with a different probability, say, 1/3? The definition of PTM should not depend on what kind of random numbers we use!

(a) Show that there is a polynomial-time PTM that, given input x outputs 1 with probability $\frac{1}{3} \pm 2^{-|x|}$ (but not more or less).

Note: This gives us a subroutine that we can use to simulate $\frac{1}{3}$-random bits with high enough precision not to influence the overall output distribution of the PTM too much.

(b) Show that there is not polynomial-time PTM that, given input n, outputs 1 with probability exactly $\frac{1}{3}$.

Hint: You can assume that the PTM runs exactly $T(n)$ steps for some function T (i.e., the runtime does not depend on the random choices). Let R be the number of random choices that lead to output 1. Show that the probability of output 1 is a fraction whose denominator is a power of two.

Problem 2: Amplification

We have define the class BPP as the set of all languages that can be solved in probabilistic polynomial time with probability at least $2/3$. We have seen that the arbitrary number $2/3$ does not matter much: if we can decide L in probabilistic polynomial time with probability $2/3$, then we can decide L in probabilistic polynomial time with probability α for any constant $\alpha < 1$.

We showed this by simply constructing a new algorithm \hat{M} that runs the original algorithm M t times (for suitable t), and then outputs the most common output.

A search problem is a relation S between bitstrings (i.e., S is a set of pairs (x, y) where y is a solution for x). We say we can “solve S in probabilistic polynomial time with probability α” iff there is a PTM M such that for all x, $\Pr[(x, y) \in R : y \leftarrow M(x)] \geq \alpha$.

Is amplification also possible for search problems? That is, is the following fact true?

\footnote{For simplicity, we consider only search problems where every x has a solution.}
Lemma 1 (Wrong!) If we can solve a search problem S in probabilistic polynomial time with probability $2/3$, then we can solve S in probabilistic polynomial time with probability α.

We will consider the prime search problem. Given N, the problem is to find a prime $p \in [N, 2N]$. Assume that we have a PTM M_{prime} that solves the prime search problem with probability $2/3$.

(a) Show that amplification by majority decision does not work for constructing a PTM M_{prime} that solves the prime search problem in probabilistic polynomial time with probability, say, $3/4$.

(b) Show how to solve the prime search problem in probabilistic polynomial time with probability $3/4$ using M_{prime}.

Note: Here you may use the fact that it can be decided in deterministic polynomial time whether a given number is a prime.

(c) (Bonus points) Show that Lemma 1 is not true.

Hint: That is, you should show that there is a search problem that can be solved in probabilistic polynomial time with probability $2/3$, but not with probability, say, $3/4$. For example, you could use a random search problem S where for each x, a bitstring y is a solution with probability 0.7.

Note: A complete proof will be quite elaborate. A proof sketch is sufficient.