Problem 1: Reductions

Consider the following languages:

- $\text{formulaSAT} := \{ f : f$ is a satisfiable Boolean formula $\}$.
- $\text{SAT} := \{ f : f$ is a satisfiable CNF formula $\}$.
- $\text{CLIQUE} := \{ (G, k) : G$ contains a k-clique $\}$. A graph G is said to contain a k-clique if there is a set of k vertices in G such that each of these vertices has an edge to each other vertex (a complete subgraph of size k).
- INDSET as described in the lecture (independent set problem; party problem).
- $\text{co-TAUTO} := \{ f : f$ is not a tautology $\}$. A tautology is a Boolean formula that is true for any assignments of truth-values to the variables.

For each pair $A, B \in \{ \text{formulaSAT}, \text{SAT}, \text{CLIQUE}, \text{co-TAUTO}, \text{INDSET} \}$, show that $A \leq_p B$. (I.e., that A is polynomial-time Karp reducible to B.)

Note: The fact $\text{SAT} \leq_p \text{INDSET}$ will be shown in the practice on Tuesday, Sep 13.

Note: None of these reductions need an elaborate construction like we use in the practice for showing that $\text{SAT} \leq_p \text{INDSET}$. Each proof should just be a few lines. You are allowed to use facts we already showed, e.g., $\text{SAT} \leq_p \text{INDSET}$ and SAT is NP-complete.

Problem 2: NP with unbounded certificates

An important condition in the definition of NP is that the certificate has polynomially-bounded length. Without that condition, the definition would look as follows (the following is not an established class!):

Definition 1 (NP with unbounded witnesses) A language L is in hugeNP iff there exists a polynomial-time Turing machine M such that for all x it holds that:

$$x \in L \iff \exists u \in \{0, 1\}^* : M(x, u) = 1.$$ \hspace{1cm} (1)

Note: u is not restricted in its length in this definition.

Show that $\text{HALT} \in \text{hugeNP}$ where HALT is the Halting Problem.\footnote{We call M polynomial-time iff there exists a polynomial-time p such that for all x, u, the running time of $M(x, u)$ is bounded by $p(|x| + |u|)$.}

\footnote{That is, $\text{HALT} = \{(m, \alpha) : M_m(\alpha) \text{ terminates}\}$ where M_m is the TM with description n.}
Hint: A certificate for \((m, \alpha) \in \text{HALT}\) could be the string \(1^n\) where \(n\) is the number of steps that \(M_m(\alpha)\) runs. The notation \(1^n\) means a bitstring consisting of \(n\) ones (e.g., \(1^{10} = 1111111111\)). So you just need to construct the TM \(M\) from Definition 1 and explain why it is polynomial-time.