You will need 50% of all homework points to qualify for the exam. (That is, if you get at least 50%, your final grade will be the exam grade. And if you do not get 50%, you do not pass the course.)

You may hand in your solutions in person or by email. If you submit by email, either scan a handwritten solution or typeset your solution readably. I do not consider ASCII formulas readable.

When submitting, indicate your name and your matriculation number. On your first submission, please also indicate a password, this password will be needed for accessing the solutions and your points online.

Problem 1: Addition on a Turing machine

Construct a Turing machine that does the following: Given input $a|b$ (where a and b are unsigned integers in binary encoding and $|$ is a special symbol), it outputs the sum of a and b (in binary encoding).

Explicitly give the set Γ of symbols (containing at least \triangleright, \square, 0, 1, $|$), the set of states Q, and the transition function δ.

You do not need to prove that your TM does add correctly, but please add sufficient comments to make the workings understandable.

Notes: Input $a|b$ means that the input tape contains $\triangleright a|b\square\square\ldots$. You can choose whether your integers are encoded lsb-first or msb-first, but make your choice explicit and stick to it.

Problem 2: NP-problems

Out of the following five problems, three are in NP. The other two are not (or at least, science cannot currently show that they are).

- Identify those three.
- Show that they are in NP. That is, say what the Turing machine M from the definition of the class NP does, say what u is. You do not need to “program” M, it is sufficient to say what M does.\footnote{E.g., like “$M(x, w)$ outputs 1 iff $|x| = |w|$.”}
- For the remaining two, explain why you cannot show that they are in NP. (No formal proof is needed. Just an explanation of the difficulties.)
(a) \textbf{SAT} := \{B : B is a satisfiable Boolean formula\}. A Boolean formula is a formula with variables \(x_1, x_2, x_3, \ldots\) and the operations \(\land, \lor, \neg\). A Boolean formula is satisfiable if the variables \(x_1, x_2, \ldots\) can be assigned values true/false so that the formula evaluates to true.

(b) \textbf{PALIN} := \{x : x is a palindrome\}.

(c) \textbf{EQ} _1 := \{(p_1, \ldots, p_n) : \exists x_1, \ldots, x_m \in \mathbb{Z}. p_1(x_1, \ldots, x_m) = \cdots = p_n(x_1, \ldots, x_m) = 0\}.

Here \(p_1, \ldots, p_n\) are polynomials in \(m\) variables with integer coefficients. (Both \(n, m\) can vary.)

(d) \textbf{EQ} _2 := \{(p_1, \ldots, p_n, b_1, \ldots, b_n) : \exists x_1, \ldots, x_m \in \mathbb{Z} \text{ s.t. } p_1(x_1, \ldots, x_m) = \cdots = p_n(x_1, \ldots, x_m) = 0 \land |x_1| \leq b_1, \ldots, |x_m| \leq b_m\}.

Here \(p_1, \ldots, p_n\) are polynomials in \(m\) variables with integer coefficients. (Both \(n, m\) can vary.)

(e) \textbf{co-SAT} := \{B : B is not a satisfiable Boolean formula\}.